Datasets:
ArXiv:
License:
{ | |
"name": "34_Customer_Segmentation_KMeans_CustomerSegmentation_ML", | |
"query": "I need to create a customer segmentation system using the K-means clustering algorithm with the Kaggle Customer Segmentation dataset. Start by standardizing the data in `src/data_loader.py`, then use the elbow method to determine the optimal number of clusters and save the elbow plot to `results/figures/elbow.jpg`. Implement the K-means algorithm in `src/model.py`. Save the cluster centers in `results/metrics/cluster_centers.txt`. Visualize the segmentation results using seaborn and save the plot as `results/figures/customer_segmentation.png`. Create an interactive Dash dashboard allowing dynamic exploration of the segments.", | |
"tags": [ | |
"Unsupervised Learning" | |
], | |
"requirements": [ | |
{ | |
"requirement_id": 0, | |
"prerequisites": [], | |
"criteria": "The \"Kaggle Customer Segmentation\" dataset is used, including data loading and preparation in `src/data_loader.py`.", | |
"category": "Dataset or Environment", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 1, | |
"prerequisites": [ | |
0 | |
], | |
"criteria": "Data is standardized to ensure feature values are within the same range in `src/data_loader.py`.", | |
"category": "Data preprocessing and postprocessing", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 2, | |
"prerequisites": [ | |
1 | |
], | |
"criteria": "The elbow method is used to determine the optimal number of clusters. Please save the elbow plot to `results/figures/elbow.jpg`.", | |
"category": "Machine Learning Method", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 3, | |
"prerequisites": [], | |
"criteria": "The K-means clustering algorithm is implemented in `src/model.py`.", | |
"category": "Machine Learning Method", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 4, | |
"prerequisites": [ | |
2, | |
3 | |
], | |
"criteria": "Cluster centers are saved in `results/metrics/cluster_centers.txt`.", | |
"category": "Save Trained Model", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 5, | |
"prerequisites": [ | |
2, | |
3, | |
4 | |
], | |
"criteria": "The Customer segmentation is visualized using \"seaborn,\" with the plot saved as `results/figures/customer_segmentation.png`.", | |
"category": "Visualization", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 6, | |
"prerequisites": [ | |
2, | |
3, | |
4 | |
], | |
"criteria": "An interactive dashboard which allows dynamic exploration of the segments is created using \"Dash\".", | |
"category": "Human Computer Interaction", | |
"satisfied": null | |
} | |
], | |
"preferences": [ | |
{ | |
"preference_id": 0, | |
"criteria": "The elbow plot clearly shows how the optimal number of clusters is determined.", | |
"satisfied": null | |
}, | |
{ | |
"preference_id": 1, | |
"criteria": " The system properly manages the launch and termination of the dashboard.", | |
"satisfied": null | |
} | |
], | |
"is_kaggle_api_needed": true, | |
"is_training_needed": true, | |
"is_web_navigation_needed": false | |
} |