Datasets:
ArXiv:
License:
{ | |
"name": "17_Heart_Disease_Prediction_XGBoost_UCI_ML", | |
"query": "Create a project to predict heart disease using an XGBoost model with the UCI Heart Disease dataset, which can be downloaded from [this link](https://archive.ics.uci.edu/dataset/45/heart+disease). Load the dataset in `src/data_loader.py`. Implement feature selection and data standardization in `src/data_loader.py`. Use SHAP values to explain the feature importance, and save the results as `results/figures/shap_importance.png`. Implement the XGBoost model in `src/model.py`. Then, use SHAP values to explain the feature importance, and save the results as `results/shap_importance.png`. Save the ROC curve to `results/figures/roc_curve.png`. Finally, generate an HTML report containing all the results and visualizations, and save it as `results/report.html`. Ensure the SHAP visualizations clearly highlight the most impactful features. Include a performance comparison with another model, such as Logistic Regression, to validate the robustness of the XGBoost model. Save the XGBoost model under `models/saved_models/`.", | |
"tags": [ | |
"Classification", | |
"Medical Analysis", | |
"Supervised Learning" | |
], | |
"requirements": [ | |
{ | |
"requirement_id": 0, | |
"prerequisites": [], | |
"criteria": "The \"UCI Heart Disease\" dataset is used, potentially being downloaded from [this link](https://archive.ics.uci.edu/dataset/45/heart+disease). Load the dataset in `src/data_loader.py`.", | |
"category": "Dataset or Environment", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 1, | |
"prerequisites": [ | |
0 | |
], | |
"criteria": "Feature selection is implemented in `src/data_loader.py`.", | |
"category": "Data preprocessing and postprocessing", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 2, | |
"prerequisites": [ | |
0 | |
], | |
"criteria": "Data standardization which ensures feature values are within the same range is implemented in `src/data_loader.py`.", | |
"category": "Data preprocessing and postprocessing", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 3, | |
"prerequisites": [], | |
"criteria": "The \"XGBoost\" model is implemented in `src/model.py`.", | |
"category": "Machine Learning Method", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 4, | |
"prerequisites": [ | |
0, | |
1, | |
2, | |
3 | |
], | |
"criteria": "\"SHAP\" values are used for feature importance explanation, with results saved as `results/figures/shap_importance.png`.", | |
"category": "Visualization", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 5, | |
"prerequisites": [ | |
0, | |
1, | |
2, | |
3 | |
], | |
"criteria": "The ROC curve saved as `results/figures/roc_curve.png`.", | |
"category": "Visualization", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 6, | |
"prerequisites": [ | |
0, | |
1, | |
2, | |
3, | |
4, | |
5 | |
], | |
"criteria": "An HTML report containing results and visualizations is generated, saved as `results/report.html`.", | |
"category": "Visualization", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 7, | |
"prerequisites": [ | |
1, | |
2, | |
3 | |
], | |
"criteria": "A performance comparison with another model (e.g., Logistic Regression) is included to validate the robustness of the XGBoost model.", | |
"category": "Other", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 8, | |
"prerequisites": [ | |
1, | |
2, | |
3 | |
], | |
"criteria": "A XGBoost model is saved under `models/saved_models/`.", | |
"category": "Save Trained Model", | |
"satisfied": null | |
} | |
], | |
"preferences": [ | |
{ | |
"preference_id": 0, | |
"criteria": "The SHAP visualizations should be clear and highlight the most impactful features, making the results easy to interpret.", | |
"satisfied": null | |
} | |
], | |
"is_kaggle_api_needed": false, | |
"is_training_needed": true, | |
"is_web_navigation_needed": true | |
} |