Datasets:
Tasks:
Token Classification
Sub-tasks:
parsing
File size: 13,184 Bytes
d5a24c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import glob
import logging
from dataclasses import dataclass
from os import listdir, path
from typing import Dict, List, Optional
import datasets
from datasets import BuilderConfig, DatasetInfo, Features, Sequence, SplitGenerator, Value
logger = logging.getLogger(__name__)
@dataclass
class BratConfig(BuilderConfig):
"""BuilderConfig for BRAT."""
url: str = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip" # type: ignore
description: Optional[str] = '''This dataset is an extension of the Dr. Inventor corpus (Fisas et al., 2015, 2016) with an annotation layer containing
fine-grained argumentative components and relations. It is the first argument-annotated corpus of scientific
publications (in English), which allows for joint analyses of argumentation and other rhetorical dimensions of
scientific writing.'''
citation: Optional[str] = """|
@inproceedings{lauscher2018b,
title = {An argument-annotated corpus of scientific publications},
booktitle = {Proceedings of the 5th Workshop on Mining Argumentation},
publisher = {Association for Computational Linguistics},
author = {Lauscher, Anne and Glava\v{s}, Goran and Ponzetto, Simone Paolo},
address = {Brussels, Belgium},
year = {2018},
pages = {40–46}
}"""
homepage: Optional[str] = "https://github.com/anlausch/ArguminSci"
subdirectory_mapping: Optional[Dict[str, str]] = None
file_name_blacklist: Optional[List[str]] = None
ann_file_extension: str = "ann"
txt_file_extension: str = "txt"
class Brat(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = BratConfig
BUILDER_CONFIG_CLASS.file_name_blacklist = ["A28"]
def _info(self):
return DatasetInfo(
description=self.config.description,
citation=self.config.citation,
homepage=self.config.homepage,
features=Features(
{
"context": Value("string"),
"file_name": Value("string"),
"spans": Sequence(
{
"id": Value("string"),
"type": Value("string"),
"locations": Sequence(
{
"start": Value("int32"),
"end": Value("int32"),
}
),
"text": Value("string"),
}
),
"relations": Sequence(
{
"id": Value("string"),
"type": Value("string"),
"arguments": Sequence(
{"type": Value("string"), "target": Value("string")}
),
}
),
"equivalence_relations": Sequence(
{
"type": Value("string"),
"targets": Sequence(Value("string")),
}
),
"events": Sequence(
{
"id": Value("string"),
"type": Value("string"),
"trigger": Value("string"),
"arguments": Sequence(
{"type": Value("string"), "target": Value("string")}
),
}
),
"attributions": Sequence(
{
"id": Value("string"),
"type": Value("string"),
"target": Value("string"),
"value": Value("string"),
}
),
"normalizations": Sequence(
{
"id": Value("string"),
"type": Value("string"),
"target": Value("string"),
"resource_id": Value("string"),
"entity_id": Value("string"),
}
),
"notes": Sequence(
{
"id": Value("string"),
"type": Value("string"),
"target": Value("string"),
"note": Value("string"),
}
),
}
),
)
@staticmethod
def _get_location(location_string):
parts = location_string.split(" ")
assert (
len(parts) == 2
), f"Wrong number of entries in location string. Expected 2, but found: {parts}"
return {"start": int(parts[0]), "end": int(parts[1])}
@staticmethod
def _get_span_annotation(annotation_line):
"""
example input:
T1 Organization 0 4 Sony
"""
_id, remaining, text = annotation_line.split("\t", maxsplit=2)
_type, locations = remaining.split(" ", maxsplit=1)
return {
"id": _id,
"text": text,
"type": _type,
"locations": [Brat._get_location(loc) for loc in locations.split(";")],
}
@staticmethod
def _get_event_annotation(annotation_line):
"""
example input:
E1 MERGE-ORG:T2 Org1:T1 Org2:T3
"""
_id, remaining = annotation_line.strip().split("\t")
args = [dict(zip(["type", "target"], a.split(":"))) for a in remaining.split(" ")]
return {
"id": _id,
"type": args[0]["type"],
"trigger": args[0]["target"],
"arguments": args[1:],
}
@staticmethod
def _get_relation_annotation(annotation_line):
"""
example input:
R1 Origin Arg1:T3 Arg2:T4
"""
_id, remaining = annotation_line.strip().split("\t")
_type, remaining = remaining.split(" ", maxsplit=1)
args = [dict(zip(["type", "target"], a.split(":"))) for a in remaining.split(" ")]
return {"id": _id, "type": _type, "arguments": args}
@staticmethod
def _get_equivalence_relation_annotation(annotation_line):
"""
example input:
* Equiv T1 T2 T3
"""
_, remaining = annotation_line.strip().split("\t")
parts = remaining.split(" ")
return {"type": parts[0], "targets": parts[1:]}
@staticmethod
def _get_attribute_annotation(annotation_line):
"""
example input (binary: implicit value is True, if present, False otherwise):
A1 Negation E1
example input (multi-value: explicit value)
A2 Confidence E2 L1
"""
_id, remaining = annotation_line.strip().split("\t")
parts = remaining.split(" ")
# if no value is present, it is implicitly "true"
if len(parts) == 2:
parts.append("true")
return {
"id": _id,
"type": parts[0],
"target": parts[1],
"value": parts[2],
}
@staticmethod
def _get_normalization_annotation(annotation_line):
"""
example input:
N1 Reference T1 Wikipedia:534366 Barack Obama
"""
_id, remaining, text = annotation_line.split("\t", maxsplit=2)
_type, target, ref = remaining.split(" ")
res_id, ent_id = ref.split(":")
return {
"id": _id,
"type": _type,
"target": target,
"resource_id": res_id,
"entity_id": ent_id,
}
@staticmethod
def _get_note_annotation(annotation_line):
"""
example input:
#1 AnnotatorNotes T1 this annotation is suspect
"""
_id, remaining, note = annotation_line.split("\t", maxsplit=2)
_type, target = remaining.split(" ")
return {
"id": _id,
"type": _type,
"target": target,
"note": note,
}
@staticmethod
def _read_annotation_file(filename):
"""
reads a BRAT v1.3 annotations file (see https://brat.nlplab.org/standoff.html)
"""
res = {
"spans": [],
"events": [],
"relations": [],
"equivalence_relations": [],
"attributions": [],
"normalizations": [],
"notes": [],
}
with open(filename) as file:
for i, line in enumerate(file):
if len(line.strip()) == 0:
continue
ann_type = line[0]
# strip away the new line character
if line.endswith("\n"):
line = line[:-1]
if ann_type == "T":
res["spans"].append(Brat._get_span_annotation(line))
elif ann_type == "E":
res["events"].append(Brat._get_event_annotation(line))
elif ann_type == "R":
res["relations"].append(Brat._get_relation_annotation(line))
elif ann_type == "*":
res["equivalence_relations"].append(
Brat._get_equivalence_relation_annotation(line)
)
elif ann_type in ["A", "M"]:
res["attributions"].append(Brat._get_attribute_annotation(line))
elif ann_type == "N":
res["normalizations"].append(Brat._get_normalization_annotation(line))
elif ann_type == "#":
res["notes"].append(Brat._get_note_annotation(line))
else:
raise ValueError(
f'unknown BRAT annotation id type: "{line}" (from file {filename} @line {i}). '
f"Annotation ids have to start with T (spans), E (events), R (relations), "
f"A (attributions), or N (normalizations). See "
f"https://brat.nlplab.org/standoff.html for the BRAT annotation file "
f"specification."
)
return res
def _generate_examples(self, files=None, directory=None):
"""Read context (.txt) and annotation (.ann) files."""
if files is None:
assert (
directory is not None
), "If files is None, directory has to be provided, but it is also None."
_files = glob.glob(f"{directory}/*.{self.config.ann_file_extension}")
files = sorted(path.splitext(fn)[0] for fn in _files)
for filename in files:
basename = path.basename(filename)
if (
self.config.file_name_blacklist is not None
and basename in self.config.file_name_blacklist
):
logger.info(f"skip annotation file: {basename} (blacklisted)")
continue
ann_fn = f"{filename}.{self.config.ann_file_extension}"
brat_annotations = Brat._read_annotation_file(ann_fn)
txt_fn = f"{filename}.{self.config.txt_file_extension}"
txt_content = open(txt_fn).read()
brat_annotations["context"] = txt_content
brat_annotations["file_name"] = basename
yield basename, brat_annotations
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
subdirectory_mapping = self.config.subdirectory_mapping
# since subclasses of BuilderConfig are not allowed to define
# attributes without defaults, check here
assert self.config.url is not None, "data url not specified"
# if url points to a local directory, just point to that
if path.exists(self.config.url) and path.isdir(self.config.url):
data_dir = self.config.url
# otherwise, download and extract
else:
data_dir = dl_manager.download_and_extract(self.config.url)
logging.info(f"load from data dir: {data_dir}")
# if no subdirectory mapping is provided, ...
if subdirectory_mapping is None:
# ... use available subdirectories as split names ...
subdirs = [f for f in listdir(data_dir) if path.isdir(path.join(data_dir, f))]
if len(subdirs) > 0:
subdirectory_mapping = {subdir: subdir for subdir in subdirs}
else:
# ... otherwise, default to a single train split with the base directory
subdirectory_mapping = {"": "train"}
return [
SplitGenerator(
name=split,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"directory": path.join(data_dir, subdir),
},
)
for subdir, split in subdirectory_mapping.items()
]
|