Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,101 Bytes
3e64812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
- en
licenses:
- cc-by-sa-4.0
multilinguality:
- monolingual
paperswithcode_id: few-nerd
pretty_name: Few-NERD
size_categories:
- 100K<n<1M
source_datasets:
- extended|wikipedia
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---

# Dataset Card for "Few-NERD"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://ningding97.github.io/fewnerd/](https://ningding97.github.io/fewnerd/)
- **Repository:** [https://github.com/thunlp/Few-NERD](https://github.com/thunlp/Few-NERD)
- **Paper:** [https://aclanthology.org/2021.acl-long.248/](https://aclanthology.org/2021.acl-long.248/)
- **Point of Contact:** See [https://ningding97.github.io/fewnerd/](https://ningding97.github.io/fewnerd/) 

### Dataset Summary

This script is for loading the Few-NERD dataset from https://ningding97.github.io/fewnerd/. 

Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset, which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities, and 4,601,223 tokens. Three benchmark tasks are built, one is supervised (Few-NERD (SUP)) and the other two are few-shot (Few-NERD (INTRA) and Few-NERD (INTER)).

NER tags use the `IO` tagging scheme. The original data uses a 2-column CoNLL-style format, with empty lines to separate sentences. DOCSTART information is not provided since the sentences are randomly ordered.

For more details see https://ningding97.github.io/fewnerd/ and https://aclanthology.org/2021.acl-long.248/.

### Supported Tasks and Leaderboards

- **Tasks:** Named Entity Recognition, Few-shot NER
- **Leaderboards:**
  - https://ningding97.github.io/fewnerd/
  - named-entity-recognition:https://paperswithcode.com/sota/named-entity-recognition-on-few-nerd-sup
  - other-few-shot-ner:https://paperswithcode.com/sota/few-shot-ner-on-few-nerd-intra
  - other-few-shot-ner:https://paperswithcode.com/sota/few-shot-ner-on-few-nerd-inter


### Languages

English

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 
  - `super`: 14.6 MB
  - `intra`: 11.4 MB
  - `inter`: 11.5 MB

- **Size of the generated dataset:**
  - `super`: 116.9 MB
  - `intra`: 106.2 MB
  - `inter`: 106.2 MB

- **Total amount of disk used:** 366.8 MB


An example of 'train' looks as follows.

```json
{
    'id': '1', 
    'tokens': ['It', 'starred', 'Hicks', "'s", 'wife', ',', 'Ellaline', 'Terriss', 'and', 'Edmund', 'Payne', '.'], 
    'ner_tags': [0, 0, 7, 0, 0, 0, 7, 7, 0, 7, 7, 0], 
    'fine_ner_tags': [0, 0, 51, 0, 0, 0, 50, 50, 0, 50, 50, 0]
}
```



### Data Fields

The data fields are the same among all splits.

- `id`: a `string` feature.
- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `art` (1), `building` (2), `event` (3), `location` (4), `organization` (5), `other`(6), `person` (7), `product` (8)
- `fine_ner_tags`: a `list` of fine-grained  classification labels, with possible values including `O` (0), `art-broadcastprogram` (1), `art-film` (2), ...

### Data Splits

| Task      | Train  |  Dev  | Test |
| -----     | ------ | ----- | ---- |
| SUP       | 131767 | 18824 | 37648 |
| INTRA     | 99519  | 19358 | 44059 |
| INTER     | 130112 | 18817 | 14007 |

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/)

### Citation Information

```
@inproceedings{ding-etal-2021-nerd,
    title = "Few-{NERD}: A Few-shot Named Entity Recognition Dataset",
    author = "Ding, Ning  and
      Xu, Guangwei  and
      Chen, Yulin  and
      Wang, Xiaobin  and
      Han, Xu  and
      Xie, Pengjun  and
      Zheng, Haitao  and
      Liu, Zhiyuan",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.248",
    doi = "10.18653/v1/2021.acl-long.248",
    pages = "3198--3213",
}
```


### Contributions