Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,479 Bytes
bb2457a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import json
import datasets
from tqdm import tqdm


_CITATION = """
@inproceedings{ding2021few,
title={Few-NERD: A Few-Shot Named Entity Recognition Dataset},
author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie, 
Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan},
booktitle={ACL-IJCNLP},
year={2021}
}
"""

_DESCRIPTION = """
Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset, 
which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities 
and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the 
other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER).
"""

# the original data files (zip of .txt) can be downloaded from tsinghua cloud
_URLs = {
    "supervised": "https://cloud.tsinghua.edu.cn/f/09265750ae6340429827/?dl=1",
    "intra": "https://cloud.tsinghua.edu.cn/f/a0d3efdebddd4412b07c/?dl=1",
    "inter": "https://cloud.tsinghua.edu.cn/f/165693d5e68b43558f9b/?dl=1",
}

# the label ids, for coarse(NER_TAGS_DICT) and fine(FINE_NER_TAGS_DICT)
NER_TAGS_DICT = {
    "O": 0,
    "art": 1,
    "building": 2,
    "event": 3,
    "location": 4,
    "organization": 5,
    "other": 6,
    "person": 7,
    "product": 8,
}

FINE_NER_TAGS_DICT = {
    "O": 0,
    "art-broadcastprogram": 1,
    "art-film": 2,
    "art-music": 3,
    "art-other": 4,
    "art-painting": 5,
    "art-writtenart": 6,
    "building-airport": 7,
    "building-hospital": 8,
    "building-hotel": 9,
    "building-library": 10,
    "building-other": 11,
    "building-restaurant": 12,
    "building-sportsfacility": 13,
    "building-theater": 14,
    "event-attack/battle/war/militaryconflict": 15,
    "event-disaster": 16,
    "event-election": 17,
    "event-other": 18,
    "event-protest": 19,
    "event-sportsevent": 20,
    "location-GPE": 21,
    "location-bodiesofwater": 22,
    "location-island": 23,
    "location-mountain": 24,
    "location-other": 25,
    "location-park": 26,
    "location-road/railway/highway/transit": 27,
    "organization-company": 28,
    "organization-education": 29,
    "organization-government/governmentagency": 30,
    "organization-media/newspaper": 31,
    "organization-other": 32,
    "organization-politicalparty": 33,
    "organization-religion": 34,
    "organization-showorganization": 35,
    "organization-sportsleague": 36,
    "organization-sportsteam": 37,
    "other-astronomything": 38,
    "other-award": 39,
    "other-biologything": 40,
    "other-chemicalthing": 41,
    "other-currency": 42,
    "other-disease": 43,
    "other-educationaldegree": 44,
    "other-god": 45,
    "other-language": 46,
    "other-law": 47,
    "other-livingthing": 48,
    "other-medical": 49,
    "person-actor": 50,
    "person-artist/author": 51,
    "person-athlete": 52,
    "person-director": 53,
    "person-other": 54,
    "person-politician": 55,
    "person-scholar": 56,
    "person-soldier": 57,
    "product-airplane": 58,
    "product-car": 59,
    "product-food": 60,
    "product-game": 61,
    "product-other": 62,
    "product-ship": 63,
    "product-software": 64,
    "product-train": 65,
    "product-weapon": 66,
}


class FewNERDConfig(datasets.BuilderConfig):
    """BuilderConfig for FewNERD"""

    def __init__(self, **kwargs):
        """BuilderConfig for FewNERD.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(FewNERDConfig, self).__init__(**kwargs)


class FewNERD(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        FewNERDConfig(name="supervised", description="Fully supervised setting."),
        FewNERDConfig(
            name="inter",
            description="Few-shot setting. Each file contains all 8 coarse "
            "types but different fine-grained types.",
        ),
        FewNERDConfig(
            name="intra", description="Few-shot setting. Randomly split by coarse type."
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.features.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.features.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "art",
                                "building",
                                "event",
                                "location",
                                "organization",
                                "other",
                                "person",
                                "product",
                            ]
                        )
                    ),
                    "fine_ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "art-broadcastprogram",
                                "art-film",
                                "art-music",
                                "art-other",
                                "art-painting",
                                "art-writtenart",
                                "building-airport",
                                "building-hospital",
                                "building-hotel",
                                "building-library",
                                "building-other",
                                "building-restaurant",
                                "building-sportsfacility",
                                "building-theater",
                                "event-attack/battle/war/militaryconflict",
                                "event-disaster",
                                "event-election",
                                "event-other",
                                "event-protest",
                                "event-sportsevent",
                                "location-GPE",
                                "location-bodiesofwater",
                                "location-island",
                                "location-mountain",
                                "location-other",
                                "location-park",
                                "location-road/railway/highway/transit",
                                "organization-company",
                                "organization-education",
                                "organization-government/governmentagency",
                                "organization-media/newspaper",
                                "organization-other",
                                "organization-politicalparty",
                                "organization-religion",
                                "organization-showorganization",
                                "organization-sportsleague",
                                "organization-sportsteam",
                                "other-astronomything",
                                "other-award",
                                "other-biologything",
                                "other-chemicalthing",
                                "other-currency",
                                "other-disease",
                                "other-educationaldegree",
                                "other-god",
                                "other-language",
                                "other-law",
                                "other-livingthing",
                                "other-medical",
                                "person-actor",
                                "person-artist/author",
                                "person-athlete",
                                "person-director",
                                "person-other",
                                "person-politician",
                                "person-scholar",
                                "person-soldier",
                                "product-airplane",
                                "product-car",
                                "product-food",
                                "product-game",
                                "product-other",
                                "product-ship",
                                "product-software",
                                "product-train",
                                "product-weapon",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://ningding97.github.io/fewnerd/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(
                        urls_to_download[self.config.name],
                        self.config.name,
                        "train.txt",
                    )
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(
                        urls_to_download[self.config.name], self.config.name, "dev.txt"
                    )
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(
                        urls_to_download[self.config.name], self.config.name, "test.txt"
                    )
                },
            ),
        ]

    def _generate_examples(self, filepath=None):
        # check file type
        assert filepath[-4:] == ".txt"

        num_lines = sum(1 for _ in open(filepath))
        id = 0

        with open(filepath, "r") as f:
            tokens, ner_tags, fine_ner_tags = [], [], []
            for line in tqdm(f, total=num_lines):
                line = line.strip().split()

                if line:
                    assert len(line) == 2
                    token, fine_ner_tag = line
                    ner_tag = fine_ner_tag.split("-")[0]

                    tokens.append(token)
                    ner_tags.append(NER_TAGS_DICT[ner_tag])
                    fine_ner_tags.append(FINE_NER_TAGS_DICT[fine_ner_tag])

                elif tokens:
                    # organize a record to be written into json
                    record = {
                        "tokens": tokens,
                        "id": str(id),
                        "ner_tags": ner_tags,
                        "fine_ner_tags": fine_ner_tags,
                    }
                    tokens, ner_tags, fine_ner_tags = [], [], []
                    id += 1
                    yield record["id"], record
            
            # take the last sentence
            if tokens:
                record = {
                    "tokens": tokens,
                    "id": str(id),
                    "ner_tags": ner_tags,
                    "fine_ner_tags": fine_ner_tags,
                }
                yield record["id"], record