Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
relation extraction
License:
File size: 9,792 Bytes
643d6a8 9bb353a 643d6a8 9bb353a 643d6a8 c0f60de 9bb353a c0f60de 9bb353a c0f60de 643d6a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The KBP37 dataset for English Relation Classification"""
import datasets
_CITATION = """\
@article{DBLP:journals/corr/ZhangW15a,
author = {Dongxu Zhang and
Dong Wang},
title = {Relation Classification via Recurrent Neural Network},
journal = {CoRR},
volume = {abs/1508.01006},
year = {2015},
url = {http://arxiv.org/abs/1508.01006},
eprinttype = {arXiv},
eprint = {1508.01006},
timestamp = {Fri, 04 Nov 2022 18:37:50 +0100},
biburl = {https://dblp.org/rec/journals/corr/ZhangW15a.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
KBP37 is a revision of MIML-RE annotation dataset, provided by Gabor Angeli et al. (2014). They use both the 2010 and
2013 KBP official document collections, as well as a July 2013 dump of Wikipedia as the text corpus for annotation.
There are 33811 sentences been annotated. Zhang and Wang made several refinements:
1. They add direction to the relation names, e.g. '`per:employee_of`' is split into '`per:employee of(e1,e2)`'
and '`per:employee of(e2,e1)`'. They also replace '`org:parents`' with '`org:subsidiaries`' and replace
'`org:member of’ with '`org:member`' (by their reverse directions).
2. They discard low frequency relations such that both directions of each relation occur more than 100 times in the
dataset.
KBP37 contains 18 directional relations and an additional '`no_relation`' relation, resulting in 37 relation classes.
"""
_HOMEPAGE = ""
_LICENSE = ""
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"train": "https://raw.githubusercontent.com/zhangdongxu/kbp37/master/train.txt",
"validation": "https://raw.githubusercontent.com/zhangdongxu/kbp37/master/dev.txt",
"test": "https://raw.githubusercontent.com/zhangdongxu/kbp37/master/test.txt"
}
_VERSION = datasets.Version("1.0.0")
_CLASS_LABELS = [
"no_relation",
"org:alternate_names(e1,e2)",
"org:alternate_names(e2,e1)",
"org:city_of_headquarters(e1,e2)",
"org:city_of_headquarters(e2,e1)",
"org:country_of_headquarters(e1,e2)",
"org:country_of_headquarters(e2,e1)",
"org:founded(e1,e2)",
"org:founded(e2,e1)",
"org:founded_by(e1,e2)",
"org:founded_by(e2,e1)",
"org:members(e1,e2)",
"org:members(e2,e1)",
"org:stateorprovince_of_headquarters(e1,e2)",
"org:stateorprovince_of_headquarters(e2,e1)",
"org:subsidiaries(e1,e2)",
"org:subsidiaries(e2,e1)",
"org:top_members/employees(e1,e2)",
"org:top_members/employees(e2,e1)",
"per:alternate_names(e1,e2)",
"per:alternate_names(e2,e1)",
"per:cities_of_residence(e1,e2)",
"per:cities_of_residence(e2,e1)",
"per:countries_of_residence(e1,e2)",
"per:countries_of_residence(e2,e1)",
"per:country_of_birth(e1,e2)",
"per:country_of_birth(e2,e1)",
"per:employee_of(e1,e2)",
"per:employee_of(e2,e1)",
"per:origin(e1,e2)",
"per:origin(e2,e1)",
"per:spouse(e1,e2)",
"per:spouse(e2,e1)",
"per:stateorprovinces_of_residence(e1,e2)",
"per:stateorprovinces_of_residence(e2,e1)",
"per:title(e1,e2)",
"per:title(e2,e1)"
]
class KBP37(datasets.GeneratorBasedBuilder):
"""KBP37 is a relation extraction dataset"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="kbp37", version=_VERSION, description="The KBP37 dataset."
),
datasets.BuilderConfig(
name="kbp37_formatted", version=_VERSION, description="The formatted KBP37 dataset."
)
]
DEFAULT_CONFIG_NAME = "kbp37" # type: ignore
def _info(self):
if self.config.name == "kbp37_formatted":
features = datasets.Features(
{
"id": datasets.Value("string"),
"token": datasets.Sequence(datasets.Value("string")),
"e1_start": datasets.Value("int32"),
"e1_end": datasets.Value("int32"),
"e2_start": datasets.Value("int32"),
"e2_end": datasets.Value("int32"),
"relation": datasets.ClassLabel(names=_CLASS_LABELS),
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("string"),
"sentence": datasets.Value("string"),
"relation": datasets.ClassLabel(names=_CLASS_LABELS),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
downloaded_files = dl_manager.download_and_extract(_URLs)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
def _generate_examples(self, filepath):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
with open(filepath, encoding="utf-8") as f:
data = []
example_line = None
for idx, line in enumerate(f.readlines()):
line_no = idx % 4 # first line contains example, second line relation, third and fourth lines are \n
if line_no == 0:
example_line = line.strip().split("\t")
elif line_no == 1:
data.append({"example": example_line, "relation": line.strip()})
for example in data:
id_ = example["example"][0]
text = example["example"][1]
assert text[:2] == "\" " and text[-2:] == " \""
text = text[2:-2]
relation = example["relation"]
if self.config.name == "kbp37_formatted":
text = text.replace("<e1>", " <e1> ")
text = text.replace("<e2>", " <e2> ")
text = text.replace("</e1>", " </e1> ")
text = text.replace("</e2>", " </e2> ")
text = text.strip().replace(r"\s\s+", r"\s")
tokens = text.split()
e1_start = tokens.index("<e1>")
e2_start = tokens.index("<e2>")
if e1_start < e2_start:
tokens.pop(e1_start)
e1_end = tokens.index("</e1>")
tokens.pop(e1_end)
e2_start = tokens.index("<e2>")
tokens.pop(e2_start)
e2_end = tokens.index("</e2>")
tokens.pop(e2_end)
# some examples, like train/1276 are invalid (empty head/tail), and
# yield non-sensical examples without this check
if e1_end > e1_start and e2_end > e2_start:
yield int(id_), {
"id": id_,
"token": tokens,
"e1_start": e1_start,
"e1_end": e1_end,
"e2_start": e2_start,
"e2_end": e2_end,
"relation": relation,
}
else:
yield int(id_), {
"id": id_,
"sentence": text,
"relation": relation,
}
|