Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
File size: 10,287 Bytes
859a923
 
60d23c0
859a923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d23c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859a923
 
 
 
 
 
 
 
 
60d23c0
 
 
 
 
 
 
 
cb85ca4
 
 
 
 
 
 
 
859a923
cb85ca4
 
 
 
 
 
 
 
 
 
 
 
 
c4cdfe1
cb85ca4
 
c4cdfe1
 
cb85ca4
 
 
c4cdfe1
cb85ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
dataset_info:
- config_name: default
  features:
  - name: tokens
    sequence: string
  - name: spo_list
    sequence:
      sequence: string
  - name: pos_tags
    sequence: string
  - name: relations
    list:
    - name: h
      struct:
      - name: text
        dtype: string
      - name: start
        dtype: int64
      - name: end
        dtype: int64
      - name: type
        dtype: string
    - name: t
      struct:
      - name: text
        dtype: string
      - name: start
        dtype: int64
      - name: end
        dtype: int64
      - name: type
        dtype: string
    - name: type
      dtype: string
  splits:
  - name: train
    num_bytes: 48934795
    num_examples: 56196
  - name: validation
    num_bytes: 4369341
    num_examples: 5000
  - name: test
    num_bytes: 4395817
    num_examples: 5000
  download_size: 14425744
  dataset_size: 57699953
- config_name: raw
  features:
  - name: sentText
    dtype: string
  - name: articleId
    dtype: string
  - name: relationMentions
    list:
    - name: em1Text
      dtype: string
    - name: em2Text
      dtype: string
    - name: label
      dtype: string
  - name: entityMentions
    list:
    - name: start
      dtype: int64
    - name: label
      dtype: string
    - name: text
      dtype: string
  - name: sentId
    dtype: string
  splits:
  - name: train
    num_bytes: 29397404
    num_examples: 56196
  - name: validation
    num_bytes: 2625955
    num_examples: 5000
  - name: test
    num_bytes: 2629885
    num_examples: 5000
  download_size: 13342957
  dataset_size: 34653244
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: raw
  data_files:
  - split: train
    path: raw/train-*
  - split: validation
    path: raw/validation-*
  - split: test
    path: raw/test-*
language:
- en
tags:
- news
- relation-extraction
pretty_name: NYT-multi
size_categories:
- 10K<n<100K
---
# Dataset Card for NYT-multi

## Dataset Description

- **Repository:** https://github.com/xiangrongzeng/copy_re
- **Paper:** https://aclanthology.org/P18-1047/

#### Dataset Summary

<!-- Provide a quick summary of the dataset. -->

The original NYT dataset by Riedel et al. (2010) consists of New York Times news articles from 1987-2007 that was distantly annotated with relations using FreeBase. The original dataset consisted of 1.18M sentences. It is available here: https://iesl.cs.umass.edu/riedel/ecml/

Zeng et al. (2018) that filtered out sentences with more than 100 words and sentences without an active relation, leaving 66195 sentences.
They randomly selected 5000 sentences from it as the test set, 5000 sentences as the validation set and the rest 56195 sentences are used as train set.
The resulting dataset called NYT-multi features overlapping entities across three entity types and 24 relation types.
You can access the raw version from Zeng et al. (2018) using `datasets.load_dataset("DFKI-SLT/nyt-multi", config="raw")`.
The original data is available here: https://github.com/xiangrongzeng/copy_re

The data was further pre-processed with the StanfordCoreNLP by Yu et al. (2020): https://github.com/yubowen-ph/JointER

We converted the data into a more readable JSON format and used it for the default version of the dataset. 

### Languages

The language in the dataset is English.


## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

### Dataset Instances

#### default
An example of 'train' looks as follows:
```json
{
  "tokens": ["Massachusetts", "ASTON", "MAGNA", "Great", "Barrington", ";", "also", "at", "Bard", "College", ",", "Annandale-on-Hudson", ",", "N.Y.", ",", "July", "1-Aug", "."],
  "spo_list": [["Annandale-on-Hudson", "/location/location/contains", "Bard College"]],
  "pos_tags": ["NNP", "NNP", "NNP", "NNP", "NNP", ":", "RB", "IN", "NNP", "NNP", ",", "NNP", ",", "NNP", ",", "NNP", "NNP", "."],
  "relations": [
    {
      "h": {"text": "Annandale-on-Hudson", "start": 11, "end": 12, "type": "LOCATION"},
      "t": {"text": "Bard College", "start": 8, "end": 10, "type": "ORGANIZATION"},
      "type": "/location/location/contains"
    }
  ]
}
```

### raw
An example of 'train' looks as follows:
```json
{
  "sentText": "Massachusetts ASTON MAGNA Great Barrington ; also at Bard College , Annandale-on-Hudson , N.Y. , July 1-Aug .",
  "articleId": "/m/vinci8/data1/riedel/projects/relation/kb/nyt1/docstore/nyt-2005-2006.backup/1669365.xml.pb",
  "relationMentions": [
    {"em1Text": "Annandale-on-Hudson", "em2Text": "Bard College", "label": "/location/location/contains"}
  ],
  "entityMentions": [
    {"start": 1, "label": "ORGANIZATION", "text": "Bard College"},
    {"start": 2, "label": "LOCATION", "text": "Annandale-on-Hudson"}
  ],
  "sentId": "1"
}
```

### Data Fields

### default
- `tokens`: the tokenized text of this example, a `list` of `string` features.
- `spo_list`: the relation triplets (head entity text, relation type, tail entity text), a `list` of `list`s containing `string` features.
- `pos_tags`: the part-of-speech tags of this example, a `list` of `string` features.
- `relations`: list of relations
    - `h`: the head entity
      - `text`: the entity text, a `string` feature.
      - `start`: start index of the head entity, a `int32` feature.
      - `end`: end index of the head entity, a `int32` feature.
      - `type`: the entity type, a `string` feature.
    - `t`: the tail entity
      - `text`: the entity text, a `string` feature.
      - `start`: start index of the tail entity, a `int32` feature.
      - `end`: end index of the tail entity, a `int32` feature.
      - `type`: the entity type, a `string` feature.
    - `type`: relation type, a `string` feature.

### raw
- `sentText`: the text of this example, a `string` feature.
- `articleId`: the id of the article, a `string` feature.
- `relationMentions`: list of relation mentions
    - `em1Text`: the head entity text, a `string` feature.
    - `em2Text`: the tail entity text, a `string` feature.
    - `label`: relation type, a `string` feature.
- `entityMentions`: list of entity mentions
    - `start`: start index of the tail entity, a `int32` feature.
    - `label`: the entity type, a `string` feature.
    - `text`: the entity text, a `string` feature.
- `sentId`: index of the sentence, a `string` feature

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
@inproceedings{zeng-etal-2018-extracting,
    title = "Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism",
    author = "Zeng, Xiangrong  and
      Zeng, Daojian  and
      He, Shizhu  and
      Liu, Kang  and
      Zhao, Jun",
    editor = "Gurevych, Iryna  and
      Miyao, Yusuke",
    booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P18-1047",
    doi = "10.18653/v1/P18-1047",
    pages = "506--514",
    abstract = "The relational facts in sentences are often complicated. Different relational triplets may have overlaps in a sentence. We divided the sentences into three types according to triplet overlap degree, including Normal, EntityPairOverlap and SingleEntiyOverlap. Existing methods mainly focus on Normal class and fail to extract relational triplets precisely. In this paper, we propose an end-to-end model based on sequence-to-sequence learning with copy mechanism, which can jointly extract relational facts from sentences of any of these classes. We adopt two different strategies in decoding process: employing only one united decoder or applying multiple separated decoders. We test our models in two public datasets and our model outperform the baseline method significantly.",
}
@article{yu-etal-2019-joint,
  author       = {Bowen Yu and
                  Zhenyu Zhang and
                  Jianlin Su and
                  Yubin Wang and
                  Tingwen Liu and
                  Bin Wang and
                  Sujian Li},
  title        = {Joint Extraction of Entities and Relations Based on a Novel Decomposition
                  Strategy},
  journal      = {CoRR},
  volume       = {abs/1909.04273},
  year         = {2019},
  url          = {http://arxiv.org/abs/1909.04273},
  eprinttype    = {arXiv},
  eprint       = {1909.04273},
  timestamp    = {Mon, 24 Aug 2020 08:57:29 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1909-04273.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{riedel2010modeling,
  title={Modeling relations and their mentions without labeled text},
  author={Riedel, Sebastian and Yao, Limin and McCallum, Andrew},
  booktitle={Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III 21},
  pages={148--163},
  year={2010},
  organization={Springer}
}
```

**APA:**

- Zeng, X., Zeng, D., He, S., Liu, K., & Zhao, J. (2018, July). Extracting relational facts by an end-to-end neural model with copy mechanism. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 506-514).
- Yu, B., Zhang, Z., Su, J., Wang, Y., Liu, T., Wang, B., & Li, S. (2019). Joint extraction of entities and relations based on a novel decomposition strategy. CoRR, abs/1909.04273. Retrieved from http://arxiv.org/abs/1909.04273
- Riedel, S., Yao, L., & McCallum, A. (2010). Modeling relations and their mentions without labeled text. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III 21 (pp. 148-163). Springer Berlin Heidelberg.

## Dataset Card Authors

[@phucdev](https://github.com/phucdev)