|
import glob |
|
import json |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import datasets |
|
from datasets import BuilderConfig, SplitGenerator |
|
|
|
_CITATION = """\ |
|
@article{yang2018scidtb, |
|
title={Scidtb: Discourse dependency treebank for scientific abstracts}, |
|
author={Yang, An and Li, Sujian}, |
|
journal={arXiv preprint arXiv:1806.03653}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question |
|
answering. SciDTB is a domain-specific discourse treebank annotated on scientific articles. |
|
Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is |
|
flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, |
|
annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating |
|
discourse dependency parsers, on which we provide several baselines as fundamental work.""" |
|
|
|
_URL = "https://codeload.github.com/PKU-TANGENT/SciDTB/zip/refs/heads/master" |
|
_HOMEPAGE = "https://github.com/PKU-TANGENT/SciDTB" |
|
|
|
|
|
@dataclass |
|
class SciDTBConfig(BuilderConfig): |
|
"""BuilderConfig for SciDTB.""" |
|
|
|
def __init__(self, subdirectory_mapping, encoding, **kwargs): |
|
super(SciDTBConfig, self).__init__(**kwargs) |
|
self.subdirectory_mapping = subdirectory_mapping |
|
self.encoding = encoding |
|
|
|
|
|
class SciDTBDataset(datasets.GeneratorBasedBuilder): |
|
"""Scientific Discourse Treebank Dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SciDTBConfig( |
|
name="SciDTB", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
subdirectory_mapping={ |
|
"train": "SciDTB-master/dataset/train", |
|
"dev": "SciDTB-master/dataset/dev/gold", |
|
"test": "SciDTB-master/dataset/test/gold", |
|
}, |
|
encoding="utf-8-sig", |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"root": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"parent": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"relation": datasets.Value("string"), |
|
} |
|
), |
|
"file_name": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
SplitGenerator( |
|
name=split, |
|
|
|
gen_kwargs={ |
|
"dir_path": os.path.join(data_dir, subdir), |
|
}, |
|
) |
|
for split, subdir in self.config.subdirectory_mapping.items() |
|
] |
|
|
|
def _generate_examples(self, dir_path): |
|
_files = glob.glob(f"{dir_path}/*.dep") |
|
for file_path in _files: |
|
with open(file_path, mode="r", encoding=self.config.encoding) as f: |
|
annotations = json.load(f) |
|
annotations["file_name"] = os.path.basename(file_path) |
|
yield annotations["file_name"], annotations |
|
|