phucdev commited on
Commit
e4a29f1
·
verified ·
1 Parent(s): 39cac54

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md CHANGED
@@ -42,4 +42,104 @@ configs:
42
  path: data/validation-*
43
  - split: test
44
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
45
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  path: data/validation-*
43
  - split: test
44
  path: data/test-*
45
+ task_categories:
46
+ - text-classification
47
+ language:
48
+ - en
49
+ tags:
50
+ - biology
51
+ - relation-classification
52
+ pretty_name: TBGA
53
+ size_categories:
54
+ - 100K<n<1M
55
  ---
56
+ # Dataset Card for TBGA
57
+
58
+ ## Dataset Description
59
+
60
+ - **Repository:** https://github.com/GDAMining/gda-extraction
61
+ - **Paper:** [TBGA: a large‑scale Gene‑Disease Association dataset for Biomedical RelationExtraction](https://link.springer.com/epdf/10.1186/s12859-022-04646-6?sharing_token=qgaQQs92ZxFpodts5HhcmW_BpE1tBhCbnbw3BuzI2RNBkapcoPX8TYwxqVikGDmcarZHWjFQGawSFYjAFhD3cB50vnZY-JefC9csY__WaxOMsnqCn5_cyZrmWMAyl_T3CruatRTM1QvUt6DbcOiPnb7cks1YDxyHWkekMqdYB1A%3D)
62
+
63
+ #### Dataset Summary
64
+
65
+ <!-- Provide a quick summary of the dataset. -->
66
+ TBGA is a comprehensive dataset created for the purpose of Gene-Disease Association (GDA) extraction, generated from over 700,000 publications.
67
+ It features more than 200,000 instances and 100,000 unique gene-disease pairs.
68
+ Each instance in the dataset includes the specific sentence from which the GDA was extracted, the extracted GDA itself, and detailed information about the gene-disease pair involved.
69
+ This dataset was semi-automatically annotated by Marchesin and Silvello using data sourced from the DisGeNET database, which houses one of the most extensive collections of genes and variants associated with human diseases.
70
+ The dataset follows the OpenNRE format and contains the following relations:
71
+ ```json
72
+ {"NA": 0, "therapeutic": 1, "biomarker": 2, "genomic_alterations": 3}
73
+ ```
74
+
75
+ ### Languages
76
+
77
+ The language in the dataset is English.
78
+
79
+
80
+ ## Dataset Structure
81
+
82
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
83
+
84
+ ### Dataset Instances
85
+
86
+ An example of 'train' looks as follows:
87
+ ```json
88
+ {
89
+ "text": "A monocyte chemoattractant protein-1 gene polymorphism is associated with occult ischemia in a high-risk asymptomatic population.",
90
+ "relation": "NA",
91
+ "h": {
92
+ "id": 6347,
93
+ "name": "CCL2",
94
+ "pos": [2, 34]
95
+ },
96
+ "t": {
97
+ "id": "C0231221",
98
+ "name": "Asymptomatic",
99
+ "pos": [105, 12]
100
+ }
101
+ }
102
+ ```
103
+
104
+
105
+ ### Data Fields
106
+
107
+ - `text`: the text of this example, a `string` feature.
108
+ - `h`: head entity
109
+ - `id`: identifier of the head entity, a `string` feature.
110
+ - `pos`: character offsets of the head entity, a list of `int32` features.
111
+ - `name`: head entity text, a `string` feature.
112
+ - `t`: tail entity
113
+ - `id`: identifier of the tail entity, a `string` feature.
114
+ - `pos`: character offsets of the tail entity, a list of `int32` features.
115
+ - `name`: tail entity text, a `string` feature.
116
+ - `relation`: a class label.
117
+
118
+
119
+ ## Citation
120
+
121
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
122
+
123
+ **BibTeX:**
124
+
125
+ ```
126
+ @article{marchesin-silvello-2022,
127
+ title = "TBGA: a large-scale Gene-Disease Association dataset for Biomedical Relation Extraction",
128
+ author = "S. Marchesin and G. Silvello",
129
+ journal = "BMC Bioinformatics",
130
+ year = "2022",
131
+ url = "https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04646-6",
132
+ doi = "10.1186/s12859-022-04646-6",
133
+ volume = "23",
134
+ number = "1",
135
+ pages = "111"
136
+ }
137
+ ```
138
+
139
+ **APA:**
140
+
141
+ - Marchesin, S., & Silvello, G. (2022). TBGA: A large-scale Gene-Disease Association dataset for Biomedical Relation Extraction. BMC Bioinformatics, 23(1), 111. https://doi.org/10.1186/s12859-022-04646-6
142
+
143
+ ## Dataset Card Authors
144
+
145
+ [@phucdev](https://github.com/phucdev)