|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Datasets loading script for wikitext_linked""" |
|
|
|
import os |
|
|
|
import datasets |
|
import pyarrow as pa |
|
import pyarrow.parquet as pq |
|
|
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@misc{merity2016pointer, |
|
title={Pointer Sentinel Mixture Models}, |
|
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher}, |
|
year={2016}, |
|
eprint={1609.07843}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
@inproceedings{nguyen2021trankit, |
|
title={Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing}, |
|
author={Nguyen, Minh Van and Lai, Viet Dac and Veyseh, Amir Pouran Ben and Nguyen, Thien Huu}, |
|
booktitle="Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", |
|
year={2021} |
|
} |
|
|
|
@misc{entity-fishing, |
|
title = {entity-fishing}, |
|
howpublished = {\\url{https://github.com/kermitt2/entity-fishing}}, |
|
publisher = {GitHub}, |
|
year = {2016--2022}, |
|
archivePrefix = {swh}, |
|
eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified |
|
Good and Featured articles on Wikipedia. Dependency Relations, POS, NER tags are marked with trankit and |
|
entities are linked with entity-fishing. |
|
The dataset is available under the Creative Commons Attribution-ShareAlike License. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/GabrielKP/svo/" |
|
|
|
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)" |
|
|
|
|
|
FEATURES = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"original_id": datasets.Value("int64"), |
|
"tok_span": datasets.Sequence(feature=datasets.Sequence(feature=datasets.Value("int64"))), |
|
"tok_upos": datasets.Sequence(feature=datasets.Value("string")), |
|
"tok_xpos": datasets.Sequence(feature=datasets.Value("string")), |
|
"tok_dephead": datasets.Sequence(feature=datasets.Value("int64")), |
|
"tok_deprel": datasets.Sequence(feature=datasets.Value("string")), |
|
"tok_lemma": datasets.Sequence(feature=datasets.Value("string")), |
|
"tok_ner": datasets.Sequence(feature=datasets.Value("string")), |
|
"ent_span": datasets.Sequence(feature=datasets.Sequence(feature=datasets.Value("int64"))), |
|
"ent_wikipedia_external_ref": datasets.Sequence(feature=datasets.Value("string")), |
|
"ent_ner": datasets.Sequence(feature=datasets.Value("string")), |
|
"ent_domains": datasets.Sequence( |
|
feature=datasets.Sequence(feature=datasets.Value("string")) |
|
), |
|
} |
|
) |
|
|
|
|
|
class WikitextLinked(datasets.ArrowBasedBuilder): |
|
"""wikitext_linked is an annotated and linked version from wikitext. Wikitext is a |
|
collection of over 100 million tokens extracted from the set of verified Good and |
|
Featured articles on Wikipedia. |
|
""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="wikitext2", |
|
version=VERSION, |
|
description="The small version", |
|
data_dir="wikitext2", |
|
), |
|
datasets.BuilderConfig( |
|
name="wikitext103", |
|
version=VERSION, |
|
description="The big version", |
|
data_dir="wikitext103", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
features=FEATURES, |
|
version=self.VERSION, |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(self.config.data_dir, "train.parquet"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(self.config.data_dir, "validation.parquet"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(self.config.data_dir, "test.parquet"), |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_tables(self, filepath): |
|
schema = pa.schema(FEATURES.type) |
|
with open(filepath, "rb") as f: |
|
parquet_file = pq.ParquetFile(f) |
|
try: |
|
for batch_idx, record_batch in enumerate( |
|
parquet_file.iter_batches(batch_size=10000, columns=None) |
|
): |
|
pa_table = pa.Table.from_batches([record_batch]) |
|
pa_table = pa.Table.from_arrays( |
|
[pa_table[field.name] for field in schema], schema=schema |
|
) |
|
|
|
|
|
|
|
yield f"{batch_idx}", pa_table |
|
except ValueError as e: |
|
logger.error(f"Failed to read file '{filepath}' with error {type(e)}: {e}") |
|
raise |
|
|