quakeset / quakeset.py
Rhodes
:hammer: Added citation
5f6d4ef
raw
history blame
8.42 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
import h5py
import numpy as np
import pandas as pd
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """
@misc{cambrin2024quakeset,
title={QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1},
author={Daniele Rege Cambrin and Paolo Garza},
year={2024},
eprint={2403.18116},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
# You can copy an official description
_DESCRIPTION = """\
QuakeSet is a dataset of earthquake images from the Copernicus Sentinel-1 satellites.
It contains images from before, after an earthquake, and a sample before the "before" sample.
Ground truth contains magnitudes and locations of earthquakes provided by ISC.
"""
_HOMEPAGE = "https://huggingface.co/datasets/DarthReca/quakeset"
_LICENSE = "OPENRAIL"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = ["earthquakes.h5"]
class QuakeSet(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="default",
version=VERSION,
description="Default configuration",
)
]
DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "default":
features = datasets.Features(
{
"sample_key": datasets.Value("string"), # sample_id
"pre_post_image": datasets.Array3D(
shape=(4, 512, 512), dtype="float32"
),
"affected": datasets.ClassLabel(num_classes=2),
"magnitude": datasets.Value("float32"),
"hypocenter": datasets.Sequence(
datasets.Value("float32"), length=3
),
"epsg": datasets.Value("int32"),
"x": datasets.Sequence(datasets.Value("float32"), length=512),
"y": datasets.Sequence(datasets.Value("float32"), length=512),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS
files = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files,
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files,
"split": "test",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
sample_ids = []
with h5py.File(filepath[0]) as f:
for key, patches in f.items():
attributes = dict(f[key].attrs)
if attributes["split"] != split:
continue
sample_ids += [(f"{key}/{p}", 1, attributes) for p in patches.keys()]
sample_ids += [
(f"{key}/{p}", 0, attributes)
for p, v in patches.items()
if "before" in v
]
for sample_id, label, attributes in sample_ids:
if "x" in sample_id or "y" in sample_id:
continue
pre_key = "pre" if label == 1 else "before"
post_key = "post" if label == 1 else "pre"
pre_sample = f[sample_id][pre_key][...]
post_sample = f[sample_id][post_key][...]
pre_sample = np.nan_to_num(pre_sample, nan=0).transpose(2, 0, 1)
post_sample = np.nan_to_num(post_sample, nan=0).transpose(2, 0, 1)
sample = np.concatenate(
[pre_sample, post_sample], axis=0, dtype=np.float32
)
sample_key = f"{sample_id}/{post_key}"
item = {
"sample_key": sample_key,
"pre_post_image": sample,
"epsg": attributes["epsg"],
}
resource_id, patch_id = sample_id.split("/")
x = f[resource_id]["x"][...]
y = f[resource_id]["y"][...]
x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
x = x[x_start * 512 : (x_start + 1) * 512]
y = y[y_start * 512 : (y_start + 1) * 512]
item |= {
"affected": label,
"magnitude": np.float32(attributes["magnitude"]),
"hypocenter": attributes["hypocenter"],
"x": x.flatten(),
"y": y.flatten(),
}
yield sample_key, item