File size: 3,654 Bytes
99b51ef
 
98c9bf1
99b51ef
 
 
 
 
 
d6f730f
 
 
3540643
 
 
 
fba4518
98c9bf1
 
 
 
 
 
 
 
3c6d390
98c9bf1
3c6d390
98c9bf1
 
3c6d390
98c9bf1
 
3c6d390
98c9bf1
3c6d390
 
99b51ef
 
 
 
 
fba4518
 
98c9bf1
 
 
 
99b51ef
ca6840e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61a6d06
ca6840e
 
 
 
 
 
 
de8f30c
 
ca6840e
de8f30c
 
 
ca6840e
 
de8f30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6840e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
dataset_info:
- config_name: default
  features:
  - name: utterance
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 715028
    num_examples: 10003
  - name: test
    num_bytes: 204010
    num_examples: 3080
  download_size: 757238
  dataset_size: 919038
- config_name: intents
  features:
  - name: id
    dtype: int64
  - name: name
    dtype: string
  - name: tags
    sequence: 'null'
  - name: regex_full_match
    sequence: 'null'
  - name: regex_partial_match
    sequence: 'null'
  - name: description
    dtype: string
  splits:
  - name: intents
    num_bytes: 8957
    num_examples: 77
  download_size: 7838
  dataset_size: 8957
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: intents
  data_files:
  - split: intents
    path: intents/intents-*
---


# banking77

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).

## Usage

It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from autointent import Dataset

banking77 = Dataset.from_hub("AutoIntent/banking77")
```

## Source

This dataset is taken from `PolyAI/banking77` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
"""Convert events dataset to autointent internal format and scheme."""

import json

import requests
from datasets import Dataset as HFDataset
from datasets import load_dataset

from autointent import Dataset
from autointent.schemas import Intent, Sample


def get_intents_data(github_file: str | None = None) -> list[Intent]:
    """Load specific json from HF repo."""
    github_file = github_file or "https://huggingface.co/datasets/PolyAI/banking77/resolve/main/dataset_infos.json"
    raw_text = requests.get(github_file, timeout=5).text
    dataset_description = json.loads(raw_text)
    intent_names = dataset_description["default"]["features"]["label"]["names"]
    return [Intent(id=i, name=name) for i, name in enumerate(intent_names)]


def convert_banking77(
    banking77_split: HFDataset, intents_data: list[Intent], shots_per_intent: int | None = None
) -> list[Sample]:
    """Convert one split into desired format."""
    all_labels = sorted(banking77_split.unique("label"))

    n_classes = len(intents_data)
    if all_labels != list(range(n_classes)):
        msg = "Something's wrong"
        raise ValueError(msg)

    classwise_samples = [[] for _ in range(n_classes)]

    for sample in banking77_split:
        target_list = classwise_samples[sample["label"]]
        if shots_per_intent is not None and len(target_list) >= shots_per_intent:
            continue
        target_list.append(Sample(utterance=sample["text"], label=sample["label"]))

    samples = [sample for samples_from_one_class in classwise_samples for sample in samples_from_one_class]
    print(f"{len(samples)=}")
    return samples


if __name__ == "__main__":
    intents_data = get_intents_data()
    banking77 = load_dataset("PolyAI/banking77", trust_remote_code=True)

    train_samples = convert_banking77(banking77["train"], intents_data=intents_data)
    test_samples = convert_banking77(banking77["test"], intents_data=intents_data)

    banking77_converted = Dataset.from_dict(
        {"train": train_samples, "test": test_samples, "intents": intents_data}
    )
```