Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -75,13 +75,16 @@ This dataset is taken from `marcel-gohsen/dstc3` and formatted with our [AutoInt
|
|
75 |
```python
|
76 |
from datasets import load_dataset
|
77 |
from autointent import Dataset
|
|
|
78 |
|
79 |
# load original data
|
80 |
dstc3 = load_dataset("marcel-gohsen/dstc3")
|
81 |
|
82 |
# extract intent names
|
83 |
dstc3["test"] = dstc3["test"].filter(lambda example: example["transcript"] != "")
|
84 |
-
intent_names = sorted(
|
|
|
|
|
85 |
intent_names.remove("reqmore")
|
86 |
dstc3["test"].filter(lambda example: "reqmore" in example["intent"])
|
87 |
name_to_id = {name: i for i, name in enumerate(intent_names)}
|
@@ -90,20 +93,23 @@ name_to_id = {name: i for i, name in enumerate(intent_names)}
|
|
90 |
def transform(example: dict):
|
91 |
return {
|
92 |
"utterance": example["transcript"],
|
93 |
-
"label": [
|
94 |
}
|
95 |
-
dstc_converted = dstc3["test"].map(
|
|
|
|
|
96 |
|
97 |
# format to autointent.Dataset
|
98 |
intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
|
99 |
utterances = []
|
100 |
-
oos_utterances = []
|
101 |
for rec in dstc_converted.to_list():
|
102 |
-
if
|
103 |
rec.pop("label")
|
104 |
-
oos_utterances.append(rec["utterance"])
|
105 |
else:
|
106 |
utterances.append(rec)
|
107 |
-
|
108 |
-
dstc_converted = Dataset.from_dict({"intents": intents, "train": utterances
|
|
|
|
|
|
|
109 |
```
|
|
|
75 |
```python
|
76 |
from datasets import load_dataset
|
77 |
from autointent import Dataset
|
78 |
+
from autointent.context.data_handler import split_dataset
|
79 |
|
80 |
# load original data
|
81 |
dstc3 = load_dataset("marcel-gohsen/dstc3")
|
82 |
|
83 |
# extract intent names
|
84 |
dstc3["test"] = dstc3["test"].filter(lambda example: example["transcript"] != "")
|
85 |
+
intent_names = sorted(
|
86 |
+
set(name for intents in dstc3["test"]["intent"] for name in intents)
|
87 |
+
)
|
88 |
intent_names.remove("reqmore")
|
89 |
dstc3["test"].filter(lambda example: "reqmore" in example["intent"])
|
90 |
name_to_id = {name: i for i, name in enumerate(intent_names)}
|
|
|
93 |
def transform(example: dict):
|
94 |
return {
|
95 |
"utterance": example["transcript"],
|
96 |
+
"label": [int(name in example["intent"]) for name in intent_names],
|
97 |
}
|
98 |
+
dstc_converted = dstc3["test"].map(
|
99 |
+
transform, remove_columns=dstc3["test"].features.keys()
|
100 |
+
)
|
101 |
|
102 |
# format to autointent.Dataset
|
103 |
intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
|
104 |
utterances = []
|
|
|
105 |
for rec in dstc_converted.to_list():
|
106 |
+
if sum(rec["label"]) == 0:
|
107 |
rec.pop("label")
|
|
|
108 |
else:
|
109 |
utterances.append(rec)
|
110 |
+
|
111 |
+
dstc_converted = Dataset.from_dict({"intents": intents, "train": utterances})
|
112 |
+
dstc_converted["train"], dstc_converted["test"] = split_dataset(
|
113 |
+
dstc_converted, split="train", test_size=0.2, random_seed=42
|
114 |
+
)
|
115 |
```
|