voorhs commited on
Commit
06d8db8
·
verified ·
1 Parent(s): b5b5291

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -15
README.md CHANGED
@@ -74,11 +74,11 @@ This dataset is taken from `ucirvine/reuters21578` and formatted with our [AutoI
74
 
75
  ```python
76
  from collections import defaultdict
77
- from datasets import load_dataset
78
  from autointent import Dataset
 
79
 
80
  # load original data
81
- reuters = load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
82
 
83
  # remove low-resource classes
84
  counter = defaultdict(int)
@@ -94,20 +94,19 @@ for n in names_to_remove:
94
  name_to_id = {name: i for i, name in enumerate(intent_names)}
95
 
96
  # extract only texts and labels
97
- def transform(example: dict):
98
- return {
99
- "utterance": example["text"],
100
- "label": [name_to_id[intent_name] for intent_name in example["topics"] if intent_name not in names_to_remove],
101
- }
102
- multilabel_reuters = reuters["train"].map(transform, remove_columns=reuters["train"].features.keys())
103
-
104
- # if any out-of-scope samples
105
- res = multilabel_reuters.to_list()
106
- for sample in res:
107
- if len(sample["label"]) == 0:
108
- sample.pop("label")
109
 
110
  # format
111
  intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
112
- reuters_converted = Dataset.from_dict({"intents": intents, "train": res})
113
  ```
 
74
 
75
  ```python
76
  from collections import defaultdict
 
77
  from autointent import Dataset
78
+ import datasets
79
 
80
  # load original data
81
+ reuters = datasets.load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
82
 
83
  # remove low-resource classes
84
  counter = defaultdict(int)
 
94
  name_to_id = {name: i for i, name in enumerate(intent_names)}
95
 
96
  # extract only texts and labels
97
+ def transform(ds: datasets.Dataset) -> list[dict]:
98
+ def _transform(example: dict):
99
+ return {
100
+ "utterance": example["text"],
101
+ "label": [int(name in example["topics"]) for name in intent_names if name not in names_to_remove]
102
+ }
103
+ ds = ds.map(_transform, remove_columns=ds.features.keys())
104
+ return [sample for sample in ds if sum(sample["label"]) != 0]
105
+
106
+ train = transform(reuters["train"])
107
+ test = transform(reuters["test"])
 
108
 
109
  # format
110
  intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
111
+ reuters_converted = Dataset.from_dict({"intents": intents, "train": train, "test": test})
112
  ```