voorhs commited on
Commit
c134d9f
·
verified ·
1 Parent(s): 7905d3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -30
README.md CHANGED
@@ -73,40 +73,56 @@ reuters = Dataset.from_hub("AutoIntent/reuters")
73
  This dataset is taken from `ucirvine/reuters21578` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
74
 
75
  ```python
76
- from collections import defaultdict
77
  from autointent import Dataset
78
  import datasets
79
 
80
- # load original data
81
- reuters = datasets.load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
82
-
83
- # remove low-resource classes
84
- counter = defaultdict(int)
85
- for batch in reuters["train"].iter(batch_size=16):
86
- for labels in batch["topics"]:
87
- for lab in labels:
88
- counter[lab] += 1
89
- names_to_remove = [name for name, cnt in counter.items() if cnt < 10]
90
-
91
- intent_names = sorted(set(name for intents in reuters["train"]["topics"] for name in intents))
92
- for n in names_to_remove:
93
- intent_names.remove(n)
94
- name_to_id = {name: i for i, name in enumerate(intent_names)}
95
-
96
- # extract only texts and labels
97
- def transform(ds: datasets.Dataset) -> list[dict]:
98
- def _transform(example: dict):
99
- return {
100
- "utterance": example["text"],
101
- "label": [int(name in example["topics"]) for name in intent_names if name not in names_to_remove]
102
- }
103
- ds = ds.map(_transform, remove_columns=ds.features.keys())
 
 
 
 
 
 
 
 
 
 
104
  return [sample for sample in ds if sum(sample["label"]) != 0]
105
 
106
- train = transform(reuters["train"])
107
- test = transform(reuters["test"])
108
 
109
- # format
110
- intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
111
- reuters_converted = Dataset.from_dict({"intents": intents, "train": train, "test": test})
 
 
 
 
 
 
 
 
 
112
  ```
 
73
  This dataset is taken from `ucirvine/reuters21578` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
74
 
75
  ```python
 
76
  from autointent import Dataset
77
  import datasets
78
 
79
+
80
+
81
+ def get_intents_info(ds: datasets.DatasetDict) -> list[str]:
82
+ return sorted(set(name for intents in ds["train"]["topics"] for name in intents))
83
+
84
+ def parse(ds: datasets.Dataset, intent_names: list[str]) -> list[dict]:
85
+ return [{
86
+ "utterance": example["text"],
87
+ "label": [int(name in example["topics"]) for name in intent_names]
88
+ } for example in ds]
89
+
90
+
91
+ def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]:
92
+ res = [0] * len(intent_names)
93
+ for sample in ds:
94
+ for i, indicator in enumerate(sample["label"]):
95
+ res[i] += indicator
96
+ for i in range(len(intent_names)):
97
+ res[i] /= len(ds)
98
+ return [(frac < fraction_thresh) for frac in res]
99
+
100
+ def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]:
101
+ res = []
102
+ for sample in ds:
103
+ if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
104
+ continue
105
+ sample["label"] = [
106
+ indicator for indicator, low_resource in
107
+ zip(sample["label"], mask, strict=True) if not low_resource
108
+ ]
109
+ res.append(sample)
110
+ return res
111
+
112
+ def remove_oos(ds: list[dict]):
113
  return [sample for sample in ds if sum(sample["label"]) != 0]
114
 
 
 
115
 
116
+ if __name__ == "__main__":
117
+ reuters = datasets.load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
118
+ intent_names = get_intents_info(reuters)
119
+ train_parsed = parse(reuters["train"], intent_names)
120
+ test_parsed = parse(reuters["test"], intent_names)
121
+ mask = get_low_resource_classes_mask(train_parsed, intent_names)
122
+ intent_names = [name for i, name in enumerate(intent_names) if not mask[i]]
123
+ train_filtered = remove_oos(remove_low_resource_classes(train_parsed, mask))
124
+ test_filtered = remove_oos(remove_low_resource_classes(test_parsed, mask))
125
+
126
+ intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
127
+ reuters_converted = Dataset.from_dict({"intents": intents, "train": train_filtered, "test": test_filtered})
128
  ```