Upload script(1).py
Browse files- script(1).py +208 -0
script(1).py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastModel
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
|
5 |
+
# Model setup
|
6 |
+
model, tokenizer = FastModel.from_pretrained(
|
7 |
+
model_name = "NewEden/Gemma-Merged-V2",
|
8 |
+
max_seq_length = 8192,
|
9 |
+
load_in_4bit = False,
|
10 |
+
load_in_8bit = False,
|
11 |
+
full_finetuning = False,
|
12 |
+
)
|
13 |
+
|
14 |
+
# Add LoRA adapters
|
15 |
+
model = FastModel.get_peft_model(
|
16 |
+
model,
|
17 |
+
finetune_vision_layers=False,
|
18 |
+
finetune_language_layers=True,
|
19 |
+
finetune_attention_modules=True,
|
20 |
+
finetune_mlp_modules=True,
|
21 |
+
target_modules=[
|
22 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
23 |
+
"gate_proj", "up_proj", "down_proj"
|
24 |
+
],
|
25 |
+
r=64,
|
26 |
+
lora_alpha=32,
|
27 |
+
lora_dropout=0.1,
|
28 |
+
bias="none",
|
29 |
+
random_state=3407,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Set up chat template
|
33 |
+
from unsloth.chat_templates import get_chat_template
|
34 |
+
tokenizer = get_chat_template(
|
35 |
+
tokenizer,
|
36 |
+
chat_template="gemma-3",
|
37 |
+
)
|
38 |
+
|
39 |
+
# Load dataset
|
40 |
+
from datasets import load_dataset, Dataset, Features, Sequence, Value
|
41 |
+
print("Loading dataset...")
|
42 |
+
dataset = load_dataset(
|
43 |
+
"NewEden/Light-Novels-Roleplay-Logs-Books-Oh-My",
|
44 |
+
split="train"
|
45 |
+
)
|
46 |
+
print(f"Dataset loaded with {len(dataset)} examples.")
|
47 |
+
|
48 |
+
# Clean + fix
|
49 |
+
def validate_and_fix_conversations(examples):
|
50 |
+
fixed = []
|
51 |
+
for conv in examples["conversations"]:
|
52 |
+
if not isinstance(conv, list):
|
53 |
+
continue
|
54 |
+
cleaned = []
|
55 |
+
for turn in conv:
|
56 |
+
if not isinstance(turn, dict):
|
57 |
+
continue
|
58 |
+
role = turn.get("role", "").lower()
|
59 |
+
content = turn.get("content", "")
|
60 |
+
if not isinstance(content, str) or not content.strip():
|
61 |
+
continue
|
62 |
+
if role == "system":
|
63 |
+
continue
|
64 |
+
if role in ["assistant", "bot", "chatbot"]:
|
65 |
+
role = "model"
|
66 |
+
elif role in ["human", "usr", "user"]:
|
67 |
+
role = "user"
|
68 |
+
else:
|
69 |
+
continue
|
70 |
+
cleaned.append({"role": role, "content": content})
|
71 |
+
|
72 |
+
if len(cleaned) < 2:
|
73 |
+
continue
|
74 |
+
|
75 |
+
if cleaned[0]["role"] != "user":
|
76 |
+
cleaned = cleaned[1:]
|
77 |
+
|
78 |
+
fixed_conv = []
|
79 |
+
expected = "user"
|
80 |
+
for turn in cleaned:
|
81 |
+
if turn["role"] == expected:
|
82 |
+
fixed_conv.append(turn)
|
83 |
+
expected = "model" if expected == "user" else "user"
|
84 |
+
|
85 |
+
if fixed_conv and fixed_conv[-1]["role"] == "user":
|
86 |
+
fixed_conv = fixed_conv[:-1]
|
87 |
+
|
88 |
+
if len(fixed_conv) >= 2:
|
89 |
+
fixed.append(fixed_conv)
|
90 |
+
|
91 |
+
return {"conversations": fixed}
|
92 |
+
|
93 |
+
print("Validating and fixing conversations...")
|
94 |
+
dataset = dataset.map(
|
95 |
+
validate_and_fix_conversations,
|
96 |
+
batched=True,
|
97 |
+
desc="Fixing conversations"
|
98 |
+
)
|
99 |
+
print(f"Validation complete. {len(dataset)} examples left.")
|
100 |
+
|
101 |
+
# Fallback dummy
|
102 |
+
if len(dataset) == 0:
|
103 |
+
print("Dataset empty after validation. Creating dummy data...")
|
104 |
+
dummy_conversations = [
|
105 |
+
[
|
106 |
+
{"role": "user", "content": "Hey, what's up?"},
|
107 |
+
{"role": "model", "content": "All good! How can I help?"}
|
108 |
+
]
|
109 |
+
]
|
110 |
+
flat_examples = []
|
111 |
+
for conv in dummy_conversations:
|
112 |
+
flat_examples.append({
|
113 |
+
"conversations": [{"from": msg["role"], "value": msg["content"]} for msg in conv]
|
114 |
+
})
|
115 |
+
features = Features({'conversations': Sequence({'from': Value('string'), 'value': Value('string')})})
|
116 |
+
dataset = Dataset.from_list(flat_examples, features=features)
|
117 |
+
print(f"Dummy dataset created with {len(dataset)} example.")
|
118 |
+
|
119 |
+
# Enforce strict alternation
|
120 |
+
def enforce_strict_user_model_pairs(examples):
|
121 |
+
fixed = []
|
122 |
+
for convo in examples["conversations"]:
|
123 |
+
if not isinstance(convo, list):
|
124 |
+
continue
|
125 |
+
last = None
|
126 |
+
valid = True
|
127 |
+
for turn in convo:
|
128 |
+
if turn["role"] == last:
|
129 |
+
valid = False
|
130 |
+
break
|
131 |
+
last = turn["role"]
|
132 |
+
if valid and convo[0]["role"] == "user" and convo[-1]["role"] == "model":
|
133 |
+
fixed.append(convo)
|
134 |
+
return {"conversations": fixed}
|
135 |
+
|
136 |
+
print("Enforcing strict user/model alternation...")
|
137 |
+
dataset = dataset.map(
|
138 |
+
enforce_strict_user_model_pairs,
|
139 |
+
batched=True,
|
140 |
+
desc="Filtering strict alternation"
|
141 |
+
)
|
142 |
+
print(f"After enforcing alternation: {len(dataset)} examples left.")
|
143 |
+
|
144 |
+
# Apply chat template
|
145 |
+
def apply_chat_template(examples):
|
146 |
+
texts = tokenizer.apply_chat_template(examples["conversations"])
|
147 |
+
return {"text": texts}
|
148 |
+
|
149 |
+
print("Applying chat template...")
|
150 |
+
dataset = dataset.map(
|
151 |
+
apply_chat_template,
|
152 |
+
batched=True,
|
153 |
+
desc="Applying chat template"
|
154 |
+
)
|
155 |
+
print(f"Chat template applied. {len(dataset)} examples ready.")
|
156 |
+
print("Sample text after templating:")
|
157 |
+
print(dataset[0]["text"][:500] + "...")
|
158 |
+
|
159 |
+
# Training
|
160 |
+
from trl import SFTTrainer, SFTConfig
|
161 |
+
trainer = SFTTrainer(
|
162 |
+
model=model,
|
163 |
+
tokenizer=tokenizer,
|
164 |
+
train_dataset=dataset,
|
165 |
+
eval_dataset=None,
|
166 |
+
args=SFTConfig(
|
167 |
+
dataset_text_field="text",
|
168 |
+
per_device_train_batch_size=1,
|
169 |
+
gradient_accumulation_steps=2,
|
170 |
+
warmup_steps=35,
|
171 |
+
num_train_epochs=4,
|
172 |
+
learning_rate=1e-5,
|
173 |
+
logging_steps=1,
|
174 |
+
optim="paged_adamw_8bit",
|
175 |
+
weight_decay=0.02,
|
176 |
+
lr_scheduler_type="linear",
|
177 |
+
seed=3407,
|
178 |
+
report_to="wandb",
|
179 |
+
),
|
180 |
+
)
|
181 |
+
|
182 |
+
from unsloth.chat_templates import train_on_responses_only
|
183 |
+
print("Setting up response-only training...")
|
184 |
+
trainer = train_on_responses_only(
|
185 |
+
trainer,
|
186 |
+
instruction_part="<start_of_turn>user\n",
|
187 |
+
response_part="<start_of_turn>model\n",
|
188 |
+
)
|
189 |
+
|
190 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
191 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
192 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
193 |
+
print(f"GPU = {gpu_stats.name} ({max_memory} GB total)")
|
194 |
+
print(f"Starting reserved memory = {start_gpu_memory} GB")
|
195 |
+
|
196 |
+
print("Starting training...")
|
197 |
+
trainer_stats = trainer.train()
|
198 |
+
|
199 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
200 |
+
used_for_lora = round(used_memory - start_gpu_memory, 3)
|
201 |
+
print(f"Training took {trainer_stats.metrics['train_runtime']} seconds "
|
202 |
+
f"({round(trainer_stats.metrics['train_runtime']/60, 2)} minutes).")
|
203 |
+
print(f"Peak memory: {used_memory} GB. Used for LoRA: {used_for_lora} GB.")
|
204 |
+
|
205 |
+
output_dir = "./gemma-finetuned"
|
206 |
+
model.save_pretrained(output_dir)
|
207 |
+
tokenizer.save_pretrained(output_dir)
|
208 |
+
print(f"Model saved at {output_dir}")
|