Delta-Vector commited on
Commit
9a62b29
·
verified ·
1 Parent(s): 7bfa786

Upload dan-chat-advanced.py

Browse files
Files changed (1) hide show
  1. dan-chat-advanced.py +151 -0
dan-chat-advanced.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module containing the PygmalionPromptTokenizingStrategy and PygmalionPrompter class"""
2
+
3
+ import copy
4
+ import logging
5
+ from collections import defaultdict
6
+ from typing import Generator, List, Tuple, Dict
7
+
8
+ from axolotl.prompt_tokenizers import (
9
+ PromptTokenizingStrategy,
10
+ parse_tokenized_to_result,
11
+ tokenize_prompt_default,
12
+ )
13
+
14
+ LOG = logging.getLogger("axolotl")
15
+
16
+ IGNORE_TOKEN_ID = -100
17
+
18
+ turn_separator = "\n"
19
+
20
+ system_prefix = "<|im_start|>system\n"
21
+ user_prefix = "<|im_start|>user\n"
22
+ assistant_prefix = "<|im_start|>assistant\n"
23
+
24
+ class DanChatMLPromptTokenizingStrategy(PromptTokenizingStrategy):
25
+ def __init__(self, prompter, tokenizer, train_on_inputs, sequence_len, *args, **kwargs):
26
+ super().__init__(prompter, tokenizer, *args, **kwargs)
27
+
28
+ res = self._tokenize(assistant_prefix, add_eos_token=False, strip_bos_token=True)
29
+ self.bot_prefix_token_ids = res["input_ids"]
30
+
31
+ res = self._tokenize(turn_separator, add_eos_token=False, strip_bos_token=True)
32
+ self.turn_separator_token_ids = res["input_ids"]
33
+
34
+ self.train_on_inputs = train_on_inputs
35
+ self.sequence_len = sequence_len
36
+
37
+ def tokenize_prompt(self, prompt):
38
+ prompt_parts = list(self.prompter.build_prompt(prompt["conversations"]))
39
+ tokenized_parts = []
40
+ total_length = 0
41
+ not_first_turn = False
42
+
43
+ for role, message, loss, prefix in prompt_parts:
44
+ prefix = prefix or ""
45
+ message = prefix + message
46
+
47
+ if role in ["system", "user", "human"]:
48
+ role_prefix = system_prefix if role == "system" else user_prefix
49
+ res = self._tokenize_with_turn(role_prefix, message, not_first_turn)
50
+ labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
51
+
52
+ elif role in ["model", "gpt"]:
53
+ if not prefix:
54
+ res = self._tokenize_with_turn(assistant_prefix, message, not_first_turn)
55
+ labels = self._get_labels(res, loss, not_first_turn)
56
+ else:
57
+ res_prefix = self._tokenize_with_turn(assistant_prefix, prefix, not_first_turn, add_eos_token=False)
58
+ labels_prefix = [IGNORE_TOKEN_ID] * len(res_prefix["input_ids"])
59
+
60
+ res_message = self._tokenize(message.rstrip(), add_eos_token=True, strip_bos_token=True)
61
+ labels_message = [*copy.deepcopy(res_message["input_ids"])] if loss else [IGNORE_TOKEN_ID] * len(res_message["input_ids"])
62
+
63
+ res = {
64
+ "input_ids": res_prefix["input_ids"] + res_message["input_ids"],
65
+ "attention_mask": res_prefix["attention_mask"] + res_message["attention_mask"]
66
+ }
67
+ labels = labels_prefix + labels_message
68
+ else:
69
+ LOG.warning(f"unknown role in conversation: {role}")
70
+ continue
71
+
72
+ part_length = len(res["input_ids"])
73
+ if total_length + part_length > self.sequence_len:
74
+ break
75
+
76
+ tokenized_parts.append({
77
+ "input_ids": res["input_ids"],
78
+ "attention_mask": res["attention_mask"],
79
+ "labels": labels,
80
+ "role": role,
81
+ "loss": loss
82
+ })
83
+ total_length += part_length
84
+ not_first_turn = True
85
+
86
+ result = {
87
+ "input_ids": [],
88
+ "attention_mask": [],
89
+ "labels": []
90
+ }
91
+
92
+
93
+ # Check if the last turn is a human/user/system turn or loss = False
94
+ while tokenized_parts and (tokenized_parts[-1]["role"] in ["human", "user", "system"] or not tokenized_parts[-1]["loss"]):
95
+ tokenized_parts.pop()
96
+
97
+
98
+ # Ensure we have at least one user/human/system turn, if not return
99
+ if not any(part["role"] in ["human", "user", "system"] for part in tokenized_parts):
100
+ return result
101
+
102
+ # Ensure we have at least one gpt/model turn, if not return
103
+ if not any(part["role"] in ["model", "gpt"] for part in tokenized_parts):
104
+ return result
105
+
106
+ # Concatenate the final result
107
+ for part in tokenized_parts:
108
+ result["input_ids"] += part["input_ids"]
109
+ result["attention_mask"] += part["attention_mask"]
110
+ result["labels"] += part["labels"]
111
+
112
+ return result
113
+
114
+ def _tokenize_with_turn(self, role_prefix, message, not_first_turn, add_eos_token=True):
115
+ full_message = (turn_separator if not_first_turn else "") + role_prefix + message.strip()
116
+ return self._tokenize(full_message, add_eos_token=add_eos_token, strip_bos_token=not_first_turn)
117
+
118
+ def _get_labels(self, res, loss, not_first_turn):
119
+ if not loss:
120
+ return [IGNORE_TOKEN_ID] * len(res["input_ids"])
121
+
122
+ prefix_len = len(self.bot_prefix_token_ids + (self.turn_separator_token_ids if not_first_turn else []))
123
+ return [IGNORE_TOKEN_ID] * prefix_len + [*copy.deepcopy(res["input_ids"])][prefix_len:]
124
+
125
+
126
+ class DanChatMLPrompter:
127
+ """
128
+ Prompter for DanChatML.
129
+ """
130
+
131
+ def __init__(self, *args, **kwargs):
132
+ pass
133
+
134
+ def build_prompt(self, source, *args, **kwargs) -> Generator[Tuple[str, str, bool, str], None, None]:
135
+ for msg in source:
136
+ from_value = msg["from"]
137
+ message_value = msg["value"]
138
+
139
+ # Set loss based on the message source
140
+ loss = msg.get("loss")
141
+ if loss is None:
142
+ loss = True if from_value in ["gpt", "model"] else None
143
+
144
+ # Set prefix, defaulting to an empty string if not present
145
+ prefix = msg.get("prefix", "")
146
+
147
+ yield from_value, message_value, loss, prefix
148
+
149
+
150
+ def load(tokenizer, cfg):
151
+ return DanChatMLPromptTokenizingStrategy(DanChatMLPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)