"""Module containing the PygmalionPromptTokenizingStrategy and PygmalionPrompter class""" import copy import logging from collections import defaultdict from typing import Generator, List, Tuple, Dict from axolotl.prompt_tokenizers import ( PromptTokenizingStrategy, parse_tokenized_to_result, tokenize_prompt_default, ) LOG = logging.getLogger("axolotl") IGNORE_TOKEN_ID = -100 turn_separator = "\n" system_prefix = "<|im_start|>system\n" user_prefix = "<|im_start|>user\n" assistant_prefix = "<|im_start|>assistant\n" class DanChatMLPromptTokenizingStrategy(PromptTokenizingStrategy): def __init__(self, prompter, tokenizer, train_on_inputs, sequence_len, *args, **kwargs): super().__init__(prompter, tokenizer, *args, **kwargs) res = self._tokenize(assistant_prefix, add_eos_token=False, strip_bos_token=True) self.bot_prefix_token_ids = res["input_ids"] res = self._tokenize(turn_separator, add_eos_token=False, strip_bos_token=True) self.turn_separator_token_ids = res["input_ids"] self.train_on_inputs = train_on_inputs self.sequence_len = sequence_len def tokenize_prompt(self, prompt): prompt_parts = list(self.prompter.build_prompt(prompt["conversations"])) tokenized_parts = [] total_length = 0 not_first_turn = False for role, message, loss, prefix in prompt_parts: prefix = prefix or "" message = prefix + message if role in ["system", "user", "human"]: role_prefix = system_prefix if role == "system" else user_prefix res = self._tokenize_with_turn(role_prefix, message, not_first_turn) labels = [IGNORE_TOKEN_ID] * len(res["input_ids"]) elif role in ["model", "gpt"]: if not prefix: res = self._tokenize_with_turn(assistant_prefix, message, not_first_turn) labels = self._get_labels(res, loss, not_first_turn) else: res_prefix = self._tokenize_with_turn(assistant_prefix, prefix, not_first_turn, add_eos_token=False) labels_prefix = [IGNORE_TOKEN_ID] * len(res_prefix["input_ids"]) res_message = self._tokenize(message.rstrip(), add_eos_token=True, strip_bos_token=True) labels_message = [*copy.deepcopy(res_message["input_ids"])] if loss else [IGNORE_TOKEN_ID] * len(res_message["input_ids"]) res = { "input_ids": res_prefix["input_ids"] + res_message["input_ids"], "attention_mask": res_prefix["attention_mask"] + res_message["attention_mask"] } labels = labels_prefix + labels_message else: LOG.warning(f"unknown role in conversation: {role}") continue part_length = len(res["input_ids"]) if total_length + part_length > self.sequence_len: break tokenized_parts.append({ "input_ids": res["input_ids"], "attention_mask": res["attention_mask"], "labels": labels, "role": role, "loss": loss }) total_length += part_length not_first_turn = True result = { "input_ids": [], "attention_mask": [], "labels": [] } # Check if the last turn is a human/user/system turn or loss = False while tokenized_parts and (tokenized_parts[-1]["role"] in ["human", "user", "system"] or not tokenized_parts[-1]["loss"]): tokenized_parts.pop() # Ensure we have at least one user/human/system turn, if not return if not any(part["role"] in ["human", "user", "system"] for part in tokenized_parts): return result # Ensure we have at least one gpt/model turn, if not return if not any(part["role"] in ["model", "gpt"] for part in tokenized_parts): return result # Concatenate the final result for part in tokenized_parts: result["input_ids"] += part["input_ids"] result["attention_mask"] += part["attention_mask"] result["labels"] += part["labels"] return result def _tokenize_with_turn(self, role_prefix, message, not_first_turn, add_eos_token=True): full_message = (turn_separator if not_first_turn else "") + role_prefix + message.strip() return self._tokenize(full_message, add_eos_token=add_eos_token, strip_bos_token=not_first_turn) def _get_labels(self, res, loss, not_first_turn): if not loss: return [IGNORE_TOKEN_ID] * len(res["input_ids"]) prefix_len = len(self.bot_prefix_token_ids + (self.turn_separator_token_ids if not_first_turn else [])) return [IGNORE_TOKEN_ID] * prefix_len + [*copy.deepcopy(res["input_ids"])][prefix_len:] class DanChatMLPrompter: """ Prompter for DanChatML. """ def __init__(self, *args, **kwargs): pass def build_prompt(self, source, *args, **kwargs) -> Generator[Tuple[str, str, bool, str], None, None]: for msg in source: from_value = msg["from"] message_value = msg["value"] # Set loss based on the message source loss = msg.get("loss") if loss is None: loss = True if from_value in ["gpt", "model"] else None # Set prefix, defaulting to an empty string if not present prefix = msg.get("prefix", "") yield from_value, message_value, loss, prefix def load(tokenizer, cfg): return DanChatMLPromptTokenizingStrategy(DanChatMLPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)