from unsloth import FastModel import torch import json # Model setup model, tokenizer = FastModel.from_pretrained( model_name = "NewEden/Gemma-Merged-V2", max_seq_length = 8192, load_in_4bit = False, load_in_8bit = False, full_finetuning = False, ) # Add LoRA adapters model = FastModel.get_peft_model( model, finetune_vision_layers=False, finetune_language_layers=True, finetune_attention_modules=True, finetune_mlp_modules=True, target_modules=[ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj" ], r=64, lora_alpha=32, lora_dropout=0.1, bias="none", random_state=3407, ) # Set up chat template from unsloth.chat_templates import get_chat_template tokenizer = get_chat_template( tokenizer, chat_template="gemma-3", ) # Load dataset from datasets import load_dataset, Dataset, Features, Sequence, Value print("Loading dataset...") dataset = load_dataset( "NewEden/Light-Novels-Roleplay-Logs-Books-Oh-My", split="train" ) print(f"Dataset loaded with {len(dataset)} examples.") # Clean + fix def validate_and_fix_conversations(examples): fixed = [] for conv in examples["conversations"]: if not isinstance(conv, list): continue cleaned = [] for turn in conv: if not isinstance(turn, dict): continue role = turn.get("role", "").lower() content = turn.get("content", "") if not isinstance(content, str) or not content.strip(): continue if role == "system": continue if role in ["assistant", "bot", "chatbot"]: role = "model" elif role in ["human", "usr", "user"]: role = "user" else: continue cleaned.append({"role": role, "content": content}) if len(cleaned) < 2: continue if cleaned[0]["role"] != "user": cleaned = cleaned[1:] fixed_conv = [] expected = "user" for turn in cleaned: if turn["role"] == expected: fixed_conv.append(turn) expected = "model" if expected == "user" else "user" if fixed_conv and fixed_conv[-1]["role"] == "user": fixed_conv = fixed_conv[:-1] if len(fixed_conv) >= 2: fixed.append(fixed_conv) return {"conversations": fixed} print("Validating and fixing conversations...") dataset = dataset.map( validate_and_fix_conversations, batched=True, desc="Fixing conversations" ) print(f"Validation complete. {len(dataset)} examples left.") # Fallback dummy if len(dataset) == 0: print("Dataset empty after validation. Creating dummy data...") dummy_conversations = [ [ {"role": "user", "content": "Hey, what's up?"}, {"role": "model", "content": "All good! How can I help?"} ] ] flat_examples = [] for conv in dummy_conversations: flat_examples.append({ "conversations": [{"from": msg["role"], "value": msg["content"]} for msg in conv] }) features = Features({'conversations': Sequence({'from': Value('string'), 'value': Value('string')})}) dataset = Dataset.from_list(flat_examples, features=features) print(f"Dummy dataset created with {len(dataset)} example.") # Enforce strict alternation def enforce_strict_user_model_pairs(examples): fixed = [] for convo in examples["conversations"]: if not isinstance(convo, list): continue last = None valid = True for turn in convo: if turn["role"] == last: valid = False break last = turn["role"] if valid and convo[0]["role"] == "user" and convo[-1]["role"] == "model": fixed.append(convo) return {"conversations": fixed} print("Enforcing strict user/model alternation...") dataset = dataset.map( enforce_strict_user_model_pairs, batched=True, desc="Filtering strict alternation" ) print(f"After enforcing alternation: {len(dataset)} examples left.") # Apply chat template def apply_chat_template(examples): texts = tokenizer.apply_chat_template(examples["conversations"]) return {"text": texts} print("Applying chat template...") dataset = dataset.map( apply_chat_template, batched=True, desc="Applying chat template" ) print(f"Chat template applied. {len(dataset)} examples ready.") print("Sample text after templating:") print(dataset[0]["text"][:500] + "...") # Training from trl import SFTTrainer, SFTConfig trainer = SFTTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, eval_dataset=None, args=SFTConfig( dataset_text_field="text", per_device_train_batch_size=1, gradient_accumulation_steps=2, warmup_steps=35, num_train_epochs=4, learning_rate=1e-5, logging_steps=1, optim="paged_adamw_8bit", weight_decay=0.02, lr_scheduler_type="linear", seed=3407, report_to="wandb", ), ) from unsloth.chat_templates import train_on_responses_only print("Setting up response-only training...") trainer = train_on_responses_only( trainer, instruction_part="<start_of_turn>user\n", response_part="<start_of_turn>model\n", ) gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"GPU = {gpu_stats.name} ({max_memory} GB total)") print(f"Starting reserved memory = {start_gpu_memory} GB") print("Starting training...") trainer_stats = trainer.train() used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) used_for_lora = round(used_memory - start_gpu_memory, 3) print(f"Training took {trainer_stats.metrics['train_runtime']} seconds " f"({round(trainer_stats.metrics['train_runtime']/60, 2)} minutes).") print(f"Peak memory: {used_memory} GB. Used for LoRA: {used_for_lora} GB.") output_dir = "./gemma-finetuned" model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) print(f"Model saved at {output_dir}")