File size: 5,120 Bytes
da55dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import json
from sentence_transformers import SentenceTransformer, util
import nltk
from openai import OpenAI
import os
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import time
import asyncio
import logging
import sys
# Configure logging
logging.basicConfig(level=logging.INFO)
# Download necessary NLTK resources
nltk.download('punkt')
def load_input_data():
    """Load input data from command line arguments."""
    try:
        input_data = json.loads(sys.argv[1])
        return input_data
    except json.JSONDecodeError as e:
        logging.error(f"Failed to decode JSON input: {e}")
        sys.exit(1)

def initialize_openai_client(api_key, base_url):
    """Initialize the OpenAI client."""
    return OpenAI(api_key=api_key, base_url=base_url)

def load_model():
    """Load the pre-trained models for evaluation."""
    semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
    return semantic_model

def evaluate_semantic_similarity(expected_response, model_response, semantic_model):
    """Evaluate semantic similarity using Sentence-BERT."""
    expected_embedding = semantic_model.encode(expected_response, convert_to_tensor=True)
    model_embedding = semantic_model.encode(model_response, convert_to_tensor=True)
    similarity_score = util.pytorch_cos_sim(expected_embedding, model_embedding)
    return similarity_score.item()

def evaluate_bleu(expected_response, model_response):
    """Evaluate BLEU score using NLTK's sentence_bleu."""
    expected_tokens = nltk.word_tokenize(expected_response.lower())
    model_tokens = nltk.word_tokenize(model_response.lower())
    smoothing_function = nltk.translate.bleu_score.SmoothingFunction().method1
    bleu_score = nltk.translate.bleu_score.sentence_bleu([expected_tokens], model_tokens, smoothing_function=smoothing_function)
    return bleu_score

async def create_with_retries(client, **kwargs):
    """Retry mechanism for handling transient server errors asynchronously."""
    for attempt in range(3):  # Retry up to 3 times
        try:
            return client.chat.completions.create(**kwargs)
        except Exception as e:  # Catch all exceptions since 'InternalServerError' is not defined
            if attempt < 2:  # Only retry for the first two attempts
                print(f"Error: {e}, retrying... (Attempt {attempt + 1}/3)")
                await asyncio.sleep(5)  # Wait for 5 seconds before retrying
            else:
                raise Exception("API request failed after retries") from e


async def evaluate_model(data, model_name, client, semantic_model):
    """Evaluate the model using the provided data."""
    semantic_scores = []
    bleu_scores = []

    for entry in data:
        prompt = entry['prompt']
        expected_response = entry['response']

        # Create a chat completion using OpenAI API
        response = await create_with_retries(
            client,
            model=f"PharynxAI/{model_name}",
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.7,
            max_tokens=200,
            timeout=300
        )

        model_response = response.choices[0].message.content  # Extract model's response

        # Evaluate scores
        semantic_score = evaluate_semantic_similarity(expected_response, model_response, semantic_model)
        semantic_scores.append(semantic_score)

        bleu_score = evaluate_bleu(expected_response, model_response)
        bleu_scores.append(bleu_score)

    # Calculate average scores
    avg_semantic_score = sum(semantic_scores) / len(semantic_scores) if semantic_scores else 0
    avg_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0

    print(f"Average Semantic Similarity: {avg_semantic_score:.4f}")
    print(f"Average BLEU Score: {avg_bleu_score:.4f}")
    # Create comprehensive results dictionary
    evaluation_results = {
        'average_semantic_score': avg_semantic_score,
        'average_bleu_score': avg_bleu_score
    }
    # Print results to stdout for capturing in handler
    print(json.dumps(evaluation_results))
    
    logging.info("\nOverall Average Scores:")
    logging.info(f"Average Semantic Similarity: {avg_semantic_score:.4f}")
    logging.info(f"Average BLEU Score: {avg_bleu_score:.4f}")

    return evaluation_results

async def main():
    # Load input data
    input_data = load_input_data()
    model_name = input_data["model_name"]
    # Initialize the OpenAI Client with your RunPod API Key and Endpoint URL
    client = OpenAI(
        api_key="MIGZGJKYD6PU8KTHTBQ8FMEMGP2RAW5DVXABFVFD",
        base_url="https://api.runpod.ai/v2/6vg8gj8ia9vd1w/openai/v1",
    )
    # Load pre-trained models
    semantic_model = load_model()
    # Load your dataset (replace with your actual JSON file)
    with open('output_json.json', 'r') as f:
        data = json.load(f)

    # Run the evaluation asynchronously
    await evaluate_model(data, model_name, client, semantic_model)

# Start the event loop
asyncio.run(main())