File size: 2,464 Bytes
a0ae865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import logging
import json
import subprocess
import time
from typing import Dict, Any
import runpod

def handler(job: Dict[str, Any]) -> Dict[str, Any]:
    """
    Handler function for running `llm_evaluation.py` in a RunPod serverless environment.

    Args:
        job (Dict[str, Any]): The job input containing parameters for evaluation.

    Returns:
        Dict[str, Any]: Evaluation results or error details.
    """
    start_time = time.time()
    logging.info("Evaluation handler started.")

    # Extract job input
    job_input = job.get('input', {})
    model_name = job_input.get('model_name')

    if not model_name:
        logging.error("Missing required field: 'model_name'")
        return {
            "status": "error",
            "error": "Missing required field: 'model_name'"
        }

    try:
        # Prepare evaluation input
        evaluation_input = json.dumps({"model_name": model_name})
        logging.info(f"Starting evaluation for model: {model_name}")

        # Run `llm_evaluation.py` as a subprocess
        result = subprocess.run(
            ['python3', 'llm_evaluation.py', evaluation_input],
            capture_output=True,
            text=True,
            check=True
        )
        logging.info("Model evaluation completed successfully.")

        # Attempt to parse the output as JSON
        try:
            evaluation_results = json.loads(result.stdout)
        except json.JSONDecodeError:
            evaluation_results = {"raw_output": result.stdout}

        return {
            "status": "success",
            "model_name": model_name,
            "processing_time": time.time() - start_time,
            "evaluation_results": evaluation_results
        }

    except subprocess.CalledProcessError as e:
        logging.error(f"Evaluation process failed: {e.stderr}")
        return {
            "status": "error",
            "error": f"Evaluation process failed: {e.stderr}",
            "stdout": e.stdout,
            "stderr": e.stderr
        }
    except Exception as e:
        logging.error(f"Unhandled error during evaluation: {str(e)}")
        return {
            "status": "error",
            "error": str(e)
        }

if __name__ == "__main__":
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s - %(levelname)s - %(message)s"
    )

    # Start RunPod serverless endpoint
    runpod.serverless.start({"handler": handler})