File size: 7,310 Bytes
a0ae865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import logging
import runpod
import os
import shutil
import uuid
import json
import time
import subprocess
from typing import Dict, Any
from azure.storage.blob import BlobServiceClient
def get_azure_connection_string():
"""Get Azure connection string from environment variable"""
conn_string ="DefaultEndpointsProtocol=https;AccountName=transcribedblobstorage;AccountKey=1Z7yKPP5DLbxnoHdh7NmHgwg3dFLaDiYHUELdid7dzfzR6/DvkZnnzpJ30lrXIMhtD5GYKo+71jP+AStC1TEvA==;EndpointSuffix=core.windows.net"
if not conn_string:
raise ValueError("Azure Storage connection string not found in environment variables")
return conn_string
# def upload_file(file_path: str, blob_name: str, container_name: str) -> str:
# """Upload a file to Azure Blob Storage"""
# if not os.path.isfile(file_path):
# raise FileNotFoundError(f"The specified file does not exist: {file_path}")
# connection_string = get_azure_connection_string()
# blob_service_client = BlobServiceClient.from_connection_string(connection_string)
# container_client = blob_service_client.get_container_client(container_name)
# with open(file_path, 'rb') as file:
# blob_client = container_client.get_blob_client(blob_name)
# blob_client.upload_blob(file)
# return blob_client.blob_name
def download_blob(blob_name: str, download_file_path: str, container_name: str) -> None:
"""Download a file from Azure Blob Storage"""
connection_string = get_azure_connection_string()
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
container_client = blob_service_client.get_container_client(container_name)
blob_client = container_client.get_blob_client(blob_name)
os.makedirs(os.path.dirname(download_file_path), exist_ok=True)
with open(download_file_path, "wb") as download_file:
download_stream = blob_client.download_blob()
download_file.write(download_stream.readall())
logging.info(f"Blob '{blob_name}' downloaded to '{download_file_path}'")
def clean_directory(directory: str) -> None:
"""Clean up a directory by removing all files and subdirectories"""
if os.path.exists(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.remove(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
logging.error(f'Failed to delete {file_path}. Reason: {e}')
def handler(job: Dict[str, Any]) -> Dict[str, Any]:
start_time = time.time()
logging.info("Handler function started")
# Extract job input and validate
job_input = job.get('input', {})
required_fields = ['pdf_file', 'system_prompt', 'model_name', 'max_step', 'learning_rate', 'epochs', 'container']
missing_fields = [field for field in required_fields if field not in job_input]
if missing_fields:
return {
"status": "error",
"error": f"Missing required fields: {', '.join(missing_fields)}"
}
work_dir = os.path.abspath(f"/tmp/work_{str(uuid.uuid4())}")
try:
# Create working directory
os.makedirs(work_dir, exist_ok=True)
logging.info(f"Working directory created: {work_dir}")
# Download and process PDF
download_path = os.path.join(work_dir, "Input_PDF.pdf")
download_blob(job_input['pdf_file'], download_path, job_input['container'])
# Verify downloaded file exists
if not os.path.exists(download_path):
raise FileNotFoundError(f"Downloaded PDF file not found at: {download_path}")
# Save pipeline input as a JSON file
pipeline_input_path = os.path.join(work_dir, "pipeline_input.json")
pipeline_input = {
"pdf_file": download_path,
"system_prompt": job_input['system_prompt'],
"model_name": job_input['model_name'],
"max_step": job_input['max_step'],
"learning_rate": job_input['learning_rate'],
"epochs": job_input['epochs']
}
with open(pipeline_input_path, 'w') as f:
json.dump(pipeline_input, f)
# Run fine-tuning and evaluation
return run_pipeline_and_evaluate(pipeline_input_path, job_input['model_name'], start_time)
except Exception as e:
error_message = f"Job failed after {time.time() - start_time:.2f} seconds: {str(e)}"
logging.error(error_message)
return {
"status": "error",
"error": error_message
}
finally:
# Clean up working directory
try:
clean_directory(work_dir)
os.rmdir(work_dir)
except Exception as e:
logging.error(f"Failed to clean up working directory: {str(e)}")
def run_pipeline_and_evaluate(pipeline_input_path: str, model_name: str, start_time: float) -> Dict[str, Any]:
try:
# Read the pipeline input file
with open(pipeline_input_path, 'r') as f:
pipeline_input = json.load(f)
# Convert the input to a JSON string for passing as an argument
pipeline_input_str = json.dumps(pipeline_input)
# Run fine-tuning pipeline with JSON string as argument
logging.info(f"Running pipeline with input: {pipeline_input_str[:100]}...")
finetuning_result = subprocess.run(
['python3', 'Finetuning_Pipeline.py', pipeline_input_str],
capture_output=True,
text=True,
check=True
)
logging.info("Fine-tuning completed successfully")
# Run evaluation
evaluation_input = json.dumps({"model_name": model_name})
result = subprocess.run(
['python3', 'llm_evaluation.py', evaluation_input],
capture_output=True,
text=True,
check=True
)
try:
# Try to parse the evaluation output as JSON
evaluation_results = json.loads(result.stdout)
except json.JSONDecodeError:
# If parsing fails, use the raw output
evaluation_results = {"raw_output": result.stdout}
return {
"status": "success",
"model_name": f"PharynxAI/{model_name}",
"processing_time": time.time() - start_time,
"evaluation_results": evaluation_results
}
except subprocess.CalledProcessError as e:
error_message = f"Pipeline process failed: {e.stderr}"
logging.error(error_message)
return {
"status": "error",
"error": error_message,
"stdout": e.stdout,
"stderr": e.stderr
}
except Exception as e:
error_message = f"Pipeline execution failed: {str(e)}"
logging.error(error_message)
return {
"status": "error",
"error": error_message
}
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
runpod.serverless.start({"handler": handler}) |