import json from sentence_transformers import SentenceTransformer, util import nltk from openai import OpenAI import os from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction import time import asyncio import logging import sys # Configure logging logging.basicConfig(level=logging.INFO) # Download necessary NLTK resources nltk.download('punkt') def load_input_data(): """Load input data from command line arguments.""" try: input_data = json.loads(sys.argv[1]) return input_data except json.JSONDecodeError as e: logging.error(f"Failed to decode JSON input: {e}") sys.exit(1) def initialize_openai_client(api_key, base_url): """Initialize the OpenAI client.""" return OpenAI(api_key=api_key, base_url=base_url) def load_model(): """Load the pre-trained models for evaluation.""" semantic_model = SentenceTransformer('all-MiniLM-L6-v2') return semantic_model def evaluate_semantic_similarity(expected_response, model_response, semantic_model): """Evaluate semantic similarity using Sentence-BERT.""" expected_embedding = semantic_model.encode(expected_response, convert_to_tensor=True) model_embedding = semantic_model.encode(model_response, convert_to_tensor=True) similarity_score = util.pytorch_cos_sim(expected_embedding, model_embedding) return similarity_score.item() def evaluate_bleu(expected_response, model_response): """Evaluate BLEU score using NLTK's sentence_bleu.""" expected_tokens = nltk.word_tokenize(expected_response.lower()) model_tokens = nltk.word_tokenize(model_response.lower()) smoothing_function = nltk.translate.bleu_score.SmoothingFunction().method1 bleu_score = nltk.translate.bleu_score.sentence_bleu([expected_tokens], model_tokens, smoothing_function=smoothing_function) return bleu_score async def create_with_retries(client, **kwargs): """Retry mechanism for handling transient server errors asynchronously.""" for attempt in range(3): # Retry up to 3 times try: return client.chat.completions.create(**kwargs) except Exception as e: # Catch all exceptions since 'InternalServerError' is not defined if attempt < 2: # Only retry for the first two attempts print(f"Error: {e}, retrying... (Attempt {attempt + 1}/3)") await asyncio.sleep(5) # Wait for 5 seconds before retrying else: raise Exception("API request failed after retries") from e async def evaluate_model(data, model_name, client, semantic_model): """Evaluate the model using the provided data.""" semantic_scores = [] bleu_scores = [] for entry in data: prompt = entry['prompt'] expected_response = entry['response'] # Create a chat completion using OpenAI API response = await create_with_retries( client, model=f"PharynxAI/{model_name}", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ], temperature=0.7, max_tokens=200, timeout=300 ) model_response = response.choices[0].message.content # Extract model's response # Evaluate scores semantic_score = evaluate_semantic_similarity(expected_response, model_response, semantic_model) semantic_scores.append(semantic_score) bleu_score = evaluate_bleu(expected_response, model_response) bleu_scores.append(bleu_score) # Calculate average scores avg_semantic_score = sum(semantic_scores) / len(semantic_scores) if semantic_scores else 0 avg_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0 print(f"Average Semantic Similarity: {avg_semantic_score:.4f}") print(f"Average BLEU Score: {avg_bleu_score:.4f}") # Create comprehensive results dictionary evaluation_results = { 'average_semantic_score': avg_semantic_score, 'average_bleu_score': avg_bleu_score } # Print results to stdout for capturing in handler print(json.dumps(evaluation_results)) logging.info("\nOverall Average Scores:") logging.info(f"Average Semantic Similarity: {avg_semantic_score:.4f}") logging.info(f"Average BLEU Score: {avg_bleu_score:.4f}") return evaluation_results async def main(): # Load input data input_data = load_input_data() model_name = input_data["model_name"] # Initialize the OpenAI Client with your RunPod API Key and Endpoint URL client = OpenAI( api_key="MIGZGJKYD6PU8KTHTBQ8FMEMGP2RAW5DVXABFVFD", base_url="https://api.runpod.ai/v2/6vg8gj8ia9vd1w/openai/v1", ) # Load pre-trained models semantic_model = load_model() # Load your dataset (replace with your actual JSON file) with open('output_json.json', 'r') as f: data = json.load(f) # Run the evaluation asynchronously await evaluate_model(data, model_name, client, semantic_model) # Start the event loop asyncio.run(main())