File size: 6,644 Bytes
021e040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IE-SemParse
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text2text
task_ids:
- Semantic-Parsing
---

# Dataset Card for "IE-SemParse"

## Table of Contents

- [Dataset Card for "IE-SemParse"](#dataset-card-for-ie-semparse)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset usage](#dataset-usage)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
      - [Human Verification Process](#human-verification-process)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** <https://github.com/divyanshuaggarwal/IE-SemParse>
- **Paper:** [Evaluating Inter-Bilingual Semantic Parsing for Indian Languages](https://arxiv.org/abs/2304.13005)
- **Point of Contact:** [Divyanshu Aggarwal](mailto:[email protected])

### Dataset Summary

INDICXNLI is similar to existing
XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI
data for eleven major Indic languages that includes
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’),
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’),
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi
(‘hi’), and Bengali (‘bn’).

### Supported Tasks and Leaderboards

**Tasks:** Natural Language Inference

**Leaderboards:** Currently there is no Leaderboard for this dataset.

### Languages

- `Assamese (as)`
- `Bengali (bn)`
- `Gujarati (gu)`
- `Kannada (kn)`
- `Hindi (hi)`
- `Malayalam (ml)`
- `Marathi (mr)`
- `Oriya (or)`
- `Punjabi (pa)`
- `Tamil (ta)`
- `Telugu (te)`

## Dataset Structure

### Data Instances

One example from the `hi` dataset is given below in JSON format.

  ```python
 {'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
 'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
 'label': 1 (neutral) }
  ```

### Data Fields

- `premise (string)`: Premise Sentence
- `hypothesis (string)`: Hypothesis Sentence
- `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise.

### Data Splits

<!-- Below is the dataset split given for `hi` dataset.

```python
DatasetDict({
    train: Dataset({
        features: ['premise', 'hypothesis', 'label'],
        num_rows: 392702
    })
    test: Dataset({
        features: ['premise', 'hypothesis', 'label'],
        num_rows: 5010
    })
    validation: Dataset({
        features: ['premise', 'hypothesis', 'label'],
        num_rows: 2490
    })
})

``` -->

Language      | ISO 639-1 Code |Train | Dev | Test |
--------------|----------------|-------|-----|------|
Assamese | as | 392,702 | 5,010 | 2,490 |
Bengali | bn | 392,702 | 5,010 | 2,490 |
Gujarati | gu |  392,702 | 5,010 | 2,490 |
Hindi | hi | 392,702 | 5,010 | 2,490 |
Kannada | kn |  392,702 | 5,010 | 2,490 |
Malayalam | ml |392,702  | 5,010 | 2,490 |
Marathi | mr |392,702 | 5,010 | 2,490 |
Oriya | or | 392,702 | 5,010 | 2,490 |
Punjabi | pa | 392,702 | 5,010 | 2,490 |
Tamil | ta | 392,702 | 5,010 | 2,490 |
Telugu | te | 392,702 | 5,010 | 2,490 |

<!-- The dataset split remains same across all languages. -->

## Dataset usage

Code snippet for using the dataset using datasets library.

```python
from datasets import load_dataset

dataset = load_dataset("Divyanshu/indicxnli")
```

## Dataset Creation

Machine translation of XNLI english dataset to 11 listed Indic Languages.

### Curation Rationale

[More information needed]

### Source Data

[XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/)

#### Initial Data Collection and Normalization

[Detailed in the paper](https://arxiv.org/abs/2304.13005)

#### Who are the source language producers?

[Detailed in the paper](https://arxiv.org/abs/2304.13005)

#### Human Verification Process

[Detailed in the paper](https://arxiv.org/abs/2304.13005)

## Considerations for Using the Data

### Social Impact of Dataset

[Detailed in the paper](https://arxiv.org/abs/2304.13005)

### Discussion of Biases

[Detailed in the paper](https://arxiv.org/abs/2304.13005)

### Other Known Limitations

[Detailed in the paper](https://arxiv.org/abs/2304.13005)

### Dataset Curators

Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan

### Licensing Information

Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.

### Citation Information

If you use any of the datasets, models or code modules, please cite the following paper:

```
@misc{https://doi.org/10.48550/arxiv.2204.08776,
  doi = {10.48550/ARXIV.2204.08776},
  
  url = {https://arxiv.org/abs/2304.13005},
  
  author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {IE-SemParse: Evaluating Multilingual Inference for Indian Languages}, 
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution 4.0 International}
}
```

<!-- ### Contributions -->