Update README
Browse files
README.md
CHANGED
@@ -1,51 +1,39 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
task_categories:
|
5 |
- text-classification
|
6 |
-
|
|
|
7 |
tags:
|
8 |
- legal
|
9 |
-
- layout
|
10 |
-
configs:
|
11 |
-
- config_name: default
|
12 |
-
data_files:
|
13 |
-
- split: train
|
14 |
-
path: data/train-*
|
15 |
-
- split: test
|
16 |
-
path: data/test-*
|
17 |
-
dataset_info:
|
18 |
-
features:
|
19 |
-
- name: document_id
|
20 |
-
dtype: string
|
21 |
-
- name: document_type
|
22 |
-
dtype: string
|
23 |
-
- name: document_original_url
|
24 |
-
dtype: string
|
25 |
-
- name: line_number
|
26 |
-
dtype: int64
|
27 |
-
- name: raw_text
|
28 |
-
dtype: string
|
29 |
-
- name: left
|
30 |
-
dtype: float64
|
31 |
-
- name: height
|
32 |
-
dtype: float64
|
33 |
-
- name: bold
|
34 |
-
dtype: bool
|
35 |
-
- name: italic
|
36 |
-
dtype: bool
|
37 |
-
- name: is_title
|
38 |
-
dtype: bool
|
39 |
-
splits:
|
40 |
-
- name: train
|
41 |
-
num_bytes: 154469665
|
42 |
-
num_examples: 356577
|
43 |
-
- name: test
|
44 |
-
num_bytes: 2927938
|
45 |
-
num_examples: 6132
|
46 |
-
download_size: 45622687
|
47 |
-
dataset_size: 157397603
|
48 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
**License**
|
51 |
|
|
|
1 |
---
|
2 |
+
license_name: ludov.1.0
|
3 |
+
license_link: LICENSE
|
4 |
task_categories:
|
5 |
- text-classification
|
6 |
+
language:
|
7 |
+
- fr
|
8 |
tags:
|
9 |
- legal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
+
**Task details**
|
12 |
+
|
13 |
+
Document structuring plays a crucial role in various natural language processing (NLP) tasks, such as information retrieval, and document understanding.
|
14 |
+
It also helps readers to effectively navigate into a structured document with a large amount of textual data.
|
15 |
+
In the legal domain, document structuring is particularly important for creating inter- and intra-document links.
|
16 |
+
|
17 |
+
This dataset contains documents segmented into lines. Each line contains layout information and its raw text, with an indication of whether it is a title
|
18 |
+
The goal here is to predict whether a line is a title or not.
|
19 |
+
It's worth noting that hierarchical level information for each line is not currently included but may be incorporated in future iterations.
|
20 |
+
|
21 |
+
|
22 |
+
**Usage**
|
23 |
+
|
24 |
+
Using Hugging Face datasets:
|
25 |
+
```
|
26 |
+
from datasets import load_dataset
|
27 |
+
dataset = load_dataset("DoctrineAI/legal_document_structuring")
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
**Source data**
|
32 |
+
|
33 |
+
The original data comes from public French institution data :
|
34 |
+
- https://www.assemblee-nationale.fr/
|
35 |
+
- https://www.senat.fr/
|
36 |
+
- https://www-impots-gouv-fr/
|
37 |
|
38 |
**License**
|
39 |
|