up
Browse files
README.md
CHANGED
@@ -1,3 +1,168 @@
|
|
1 |
---
|
2 |
license: afl-3.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: afl-3.0
|
3 |
---
|
4 |
+
# pdf-layout-chinese: A Chinese document layout PDF dataset
|
5 |
+
|
6 |
+
### 介绍
|
7 |
+
|
8 |
+
pdf-layout-chinese是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label:
|
9 |
+
|
10 |
+
| 正文 | 标题 | 图片 | 图片标题 | 表格 | 表格标题 | 页眉 | 页脚 | 注释 | 公式 |
|
11 |
+
| :----: | :-----: | :------: | :--------------: | :-----: | :-------------: | :------: | :------: | :---------: | :--------: |
|
12 |
+
| Text | Title | Figure | Figure caption | Table | Table caption | Header | Footer | Reference | Equation |
|
13 |
+
|
14 |
+
共包含5000张训练集和1000张验证集,分别在train和val目录下。每张图片对应一个同名的标注文件(.json)。
|
15 |
+
|
16 |
+
样例展示:
|
17 |
+
|
18 |
+

|
19 |
+

|
20 |
+
|
21 |
+
### 标注格式
|
22 |
+
|
23 |
+
我们的标注工具是labelme,所以标注格式和labelme格式一致。这里说明一下比较重要的字段。
|
24 |
+
|
25 |
+
"shapes": shapes字段是一个list,里面有多个dict,每个dict代表一个标注实例。
|
26 |
+
|
27 |
+
"labels": 类别。
|
28 |
+
|
29 |
+
"points": 实例标注。因为我们的标注是Polygon形式,所以points里的坐标数量可能大于4。
|
30 |
+
|
31 |
+
"shape_type": "polygon"
|
32 |
+
|
33 |
+
"imagePath": 图片路径/名
|
34 |
+
|
35 |
+
"imageHeight": 高
|
36 |
+
|
37 |
+
"imageWidth": 宽
|
38 |
+
|
39 |
+
展示一个完整的标注样例:
|
40 |
+
|
41 |
+
```
|
42 |
+
{
|
43 |
+
"version":"4.5.6",
|
44 |
+
"flags":{},
|
45 |
+
"shapes":[
|
46 |
+
{
|
47 |
+
"label":"Title",
|
48 |
+
"points":[
|
49 |
+
[
|
50 |
+
553.1111111111111,
|
51 |
+
166.59259259259258
|
52 |
+
],
|
53 |
+
[
|
54 |
+
553.1111111111111,
|
55 |
+
198.59259259259258
|
56 |
+
],
|
57 |
+
[
|
58 |
+
686.1111111111111,
|
59 |
+
198.59259259259258
|
60 |
+
],
|
61 |
+
[
|
62 |
+
686.1111111111111,
|
63 |
+
166.59259259259258
|
64 |
+
]
|
65 |
+
],
|
66 |
+
"group_id":null,
|
67 |
+
"shape_type":"polygon",
|
68 |
+
"flags":{}
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"label":"Text",
|
72 |
+
"points":[
|
73 |
+
[
|
74 |
+
250.5925925925925,
|
75 |
+
298.0740740740741
|
76 |
+
],
|
77 |
+
[
|
78 |
+
250.5925925925925,
|
79 |
+
345.0740740740741
|
80 |
+
],
|
81 |
+
[
|
82 |
+
188.5925925925925,
|
83 |
+
345.0740740740741
|
84 |
+
],
|
85 |
+
[
|
86 |
+
188.5925925925925,
|
87 |
+
410.0740740740741
|
88 |
+
],
|
89 |
+
[
|
90 |
+
188.5925925925925,
|
91 |
+
456.0740740740741
|
92 |
+
],
|
93 |
+
[
|
94 |
+
324.5925925925925,
|
95 |
+
456.0740740740741
|
96 |
+
],
|
97 |
+
[
|
98 |
+
324.5925925925925,
|
99 |
+
410.0740740740741
|
100 |
+
],
|
101 |
+
[
|
102 |
+
1051.5925925925926,
|
103 |
+
410.0740740740741
|
104 |
+
],
|
105 |
+
[
|
106 |
+
1051.5925925925926,
|
107 |
+
345.0740740740741
|
108 |
+
],
|
109 |
+
[
|
110 |
+
1052.5925925925926,
|
111 |
+
345.0740740740741
|
112 |
+
],
|
113 |
+
[
|
114 |
+
1052.5925925925926,
|
115 |
+
298.0740740740741
|
116 |
+
]
|
117 |
+
],
|
118 |
+
"group_id":null,
|
119 |
+
"shape_type":"polygon",
|
120 |
+
"flags":{}
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"label":"Footer",
|
124 |
+
"points":[
|
125 |
+
[
|
126 |
+
1033.7407407407406,
|
127 |
+
1634.5185185185185
|
128 |
+
],
|
129 |
+
[
|
130 |
+
1033.7407407407406,
|
131 |
+
1646.5185185185185
|
132 |
+
],
|
133 |
+
[
|
134 |
+
1052.7407407407406,
|
135 |
+
1646.5185185185185
|
136 |
+
],
|
137 |
+
[
|
138 |
+
1052.7407407407406,
|
139 |
+
1634.5185185185185
|
140 |
+
]
|
141 |
+
],
|
142 |
+
"group_id":null,
|
143 |
+
"shape_type":"polygon",
|
144 |
+
"flags":{}
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"imagePath":"val_0031.jpg",
|
148 |
+
"imageData":null,
|
149 |
+
"imageHeight":1754,
|
150 |
+
"imageWidth":1240
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
154 |
+
### 转coco格式
|
155 |
+
|
156 |
+
执行命令:
|
157 |
+
|
158 |
+
```
|
159 |
+
# train
|
160 |
+
python3 labelme2coco.py train train_save_path --labels labels.txt
|
161 |
+
|
162 |
+
# val
|
163 |
+
python3 labelme2coco.py val val_save_path --labels labels.txt
|
164 |
+
```
|
165 |
+
|
166 |
+
转换结果保存在train_save_path/val_save_path目录下。
|
167 |
+
|
168 |
+
labelme2coco.py取自labelme,更多信息请参考[labelme官方项目](https://github.com/wkentaro/labelme/tree/master/examples/instance_segmentation)
|