qanastek commited on
Commit
ecafb29
·
1 Parent(s): 5a28dcb

Upload CLISTER.py

Browse files
Files changed (1) hide show
  1. CLISTER.py +156 -0
CLISTER.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import random
4
+
5
+ import datasets
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+ _CITATION = """\
10
+ @inproceedings{hiebel:cea-03740484,
11
+ TITLE = {{CLISTER: A corpus for semantic textual similarity in French clinical narratives}},
12
+ AUTHOR = {Hiebel, Nicolas and Ferret, Olivier and Fort, Kar{\"e}n and N{\'e}v{\'e}ol, Aur{\'e}lie},
13
+ URL = {https://hal-cea.archives-ouvertes.fr/cea-03740484},
14
+ BOOKTITLE = {{LREC 2022 - 13th Language Resources and Evaluation Conference}},
15
+ ADDRESS = {Marseille, France},
16
+ PUBLISHER = {{European Language Resources Association}},
17
+ SERIES = {LREC 2022 - Proceedings of the 13th Conference on Language Resources and Evaluation},
18
+ VOLUME = {2022},
19
+ PAGES = {4306‑4315},
20
+ YEAR = {2022},
21
+ MONTH = Jun,
22
+ KEYWORDS = {Semantic Similarity ; Corpus Development ; Clinical Text ; French ; Semantic Similarity},
23
+ PDF = {https://hal-cea.archives-ouvertes.fr/cea-03740484/file/2022.lrec-1.459.pdf},
24
+ HAL_ID = {cea-03740484},
25
+ HAL_VERSION = {v1},
26
+ }
27
+ """
28
+
29
+ _DESCRIPTION = """\
30
+ Modern Natural Language Processing relies on the availability of annotated corpora for training and \
31
+ evaluating models. Such resources are scarce, especially for specialized domains in languages other \
32
+ than English. In particular, there are very few resources for semantic similarity in the clinical domain \
33
+ in French. This can be useful for many biomedical natural language processing applications, including \
34
+ text generation. We introduce a definition of similarity that is guided by clinical facts and apply it \
35
+ to the development of a new French corpus of 1,000 sentence pairs manually annotated according to \
36
+ similarity scores. This new sentence similarity corpus is made freely available to the community. We \
37
+ further evaluate the corpus through experiments of automatic similarity measurement. We show that a \
38
+ model of sentence embeddings can capture similarity with state of the art performance on the DEFT STS \
39
+ shared task evaluation data set (Spearman=0.8343). We also show that the CLISTER corpus is complementary \
40
+ to DEFT STS. \
41
+ """
42
+
43
+ _HOMEPAGE = "https://gitlab.inria.fr/codeine/clister"
44
+
45
+ _LICENSE = "unknown"
46
+
47
+ class CLISTER(datasets.GeneratorBasedBuilder):
48
+
49
+ DEFAULT_CONFIG_NAME = "source"
50
+
51
+ BUILDER_CONFIGS = [
52
+ datasets.BuilderConfig(name="source", version="1.0.0", description="The CLISTER corpora"),
53
+ ]
54
+
55
+ def _info(self):
56
+
57
+ features = datasets.Features(
58
+ {
59
+ "id": datasets.Value("string"),
60
+ "document_1_id": datasets.Value("string"),
61
+ "document_2_id": datasets.Value("string"),
62
+ "text_1": datasets.Value("string"),
63
+ "text_2": datasets.Value("string"),
64
+ "label": datasets.Value("float"),
65
+ }
66
+ )
67
+
68
+ return datasets.DatasetInfo(
69
+ description=_DESCRIPTION,
70
+ features=features,
71
+ supervised_keys=None,
72
+ homepage=_HOMEPAGE,
73
+ license=str(_LICENSE),
74
+ citation=_CITATION,
75
+ )
76
+
77
+ def _split_generators(self, dl_manager):
78
+
79
+ data_dir = self.config.data_dir.rstrip("/")
80
+
81
+ return [
82
+ datasets.SplitGenerator(
83
+ name=datasets.Split.TRAIN,
84
+ gen_kwargs={
85
+ "csv_file": data_dir + "train.csv",
86
+ "json_file": data_dir + "id_to_sentence_train.json",
87
+ "split": "train",
88
+ },
89
+ ),
90
+ datasets.SplitGenerator(
91
+ name=datasets.Split.VALIDATION,
92
+ gen_kwargs={
93
+ "csv_file": data_dir + "train.csv",
94
+ "json_file": data_dir + "id_to_sentence_train.json",
95
+ "split": "validation",
96
+ },
97
+ ),
98
+ datasets.SplitGenerator(
99
+ name=datasets.Split.TEST,
100
+ gen_kwargs={
101
+ "csv_file": data_dir + "test.csv",
102
+ "json_file": data_dir + "id_to_sentence_test.json",
103
+ "split": "test",
104
+ },
105
+ ),
106
+ ]
107
+
108
+ def _generate_examples(self, csv_file, json_file, split):
109
+
110
+ all_res = []
111
+
112
+ key = 0
113
+
114
+ # Load JSON file
115
+ f_json = open(json_file)
116
+ data_map = json.load(f_json)
117
+ f_json.close()
118
+
119
+ # Load CSV file
120
+ df = pd.read_csv(csv_file, sep="\t")
121
+ print(df)
122
+
123
+ for index, e in df.iterrows():
124
+
125
+ all_res.append({
126
+ "id": str(key),
127
+ "document_1_id": e["id_1"],
128
+ "document_2_id": e["id_2"],
129
+ "text_1": data_map[e["id_1"]],
130
+ "text_2": data_map[e["id_2"]],
131
+ "label": e["sim"],
132
+ })
133
+
134
+ if split != "test":
135
+
136
+ ids = [r["id"] for r in all_res]
137
+
138
+ random.seed(4)
139
+ random.shuffle(ids)
140
+ random.shuffle(ids)
141
+ random.shuffle(ids)
142
+
143
+ train, validation = np.split(ids, [int(len(ids)*0.8333)])
144
+
145
+ if split == "train":
146
+ allowed_ids = list(train)
147
+ elif split == "validation":
148
+ allowed_ids = list(validation)
149
+
150
+ for r in all_res:
151
+ if r["id"] in allowed_ids:
152
+ yield r["id"], r
153
+ else:
154
+
155
+ for r in all_res:
156
+ yield r["id"], r