File size: 8,729 Bytes
b829cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# pip install bs4 syntok
import os
import random
import datasets
import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer
tokenizer = Tokenizer()
_CITATION = """\
@report{Magnini2021, \
author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza \
and Roberto Zanoli and Fondazione Bruno Kessler}, \
keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information}, \
title = {The E3C Project: \
European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus}, \
url = {https://uts.nlm.nih.gov/uts/umls/home}, \
year = {2021}, \
}
"""
_DESCRIPTION = """\
E3C is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) \
of semantically annotated clinical narratives to allow for the linguistic analysis, benchmarking, \
and training of information extraction systems. It consists of two types of annotations: \
(i) clinical entities (e.g., pathologies), (ii) temporal information and factuality (e.g., events). \
Researchers can use the benchmark training and test splits of our corpus to develop and test \
their own models.
"""
_URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip"
_LANGUAGES = ["English","Spanish","Basque","French","Italian"]
class E3C(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{lang}", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_clinical_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=["O","B-CLINENTITY","I-CLINENTITY"],
),
),
"ner_temporal_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"],
),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
citation=_CITATION,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name, "layer1"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name, "layer1"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_validation", self.config.name, "layer2"),
"split": "test",
},
),
]
@staticmethod
def get_annotations(entities: ResultSet, text: str) -> list:
return [[
int(entity.get("begin")),
int(entity.get("end")),
text[int(entity.get("begin")) : int(entity.get("end"))],
] for entity in entities]
def get_clinical_annotations(self, entities: ResultSet, text: str) -> list:
return [[
int(entity.get("begin")),
int(entity.get("end")),
text[int(entity.get("begin")) : int(entity.get("end"))],
entity.get("entityID"),
] for entity in entities]
def get_parsed_data(self, filepath: str):
for root, _, files in os.walk(filepath):
for file in files:
with open(f"{root}/{file}") as soup_file:
soup = BeautifulSoup(soup_file, "xml")
text = soup.find("cas:Sofa").get("sofaString")
yield {
"CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text),
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
"ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text),
"BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text),
"TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text),
"RML": self.get_annotations(soup.find_all("custom:RML"), text),
"SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text),
"TOKENS": self.get_annotations(soup.find_all("type4:Token"), text),
}
def _generate_examples(self, filepath, split):
all_res = []
key = 0
for content in self.get_parsed_data(filepath):
for sentence in content["SENTENCE"]:
tokens = [(
token.offset + sentence[0],
token.offset + sentence[0] + len(token.value),
token.value,
) for token in list(tokenizer.tokenize(sentence[-1]))]
filtered_tokens = list(
filter(
lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
tokens,
)
)
tokens_offsets = [
[token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
]
clinical_labels = ["O"] * len(filtered_tokens)
clinical_cuid = ["CUI_LESS"] * len(filtered_tokens)
temporal_information_labels = ["O"] * len(filtered_tokens)
for entity_type in ["CLINENTITY","EVENT","ACTOR","BODYPART","TIMEX3","RML"]:
if len(content[entity_type]) != 0:
for entities in list(content[entity_type]):
annotated_tokens = [
idx_token
for idx_token, token in enumerate(filtered_tokens)
if token[0] >= entities[0] and token[1] <= entities[1]
]
for idx_token in annotated_tokens:
if entity_type == "CLINENTITY":
if idx_token == annotated_tokens[0]:
clinical_labels[idx_token] = f"B-{entity_type}"
else:
clinical_labels[idx_token] = f"I-{entity_type}"
clinical_cuid[idx_token] = entities[-1]
else:
if idx_token == annotated_tokens[0]:
temporal_information_labels[idx_token] = f"B-{entity_type}"
else:
temporal_information_labels[idx_token] = f"I-{entity_type}"
all_res.append({
"id": key,
"text": sentence[-1],
"tokens": list(map(lambda token: token[2], filtered_tokens)),
"ner_clinical_tags": clinical_labels,
"ner_temporal_tags": temporal_information_labels,
})
key += 1
if split != "test":
ids = [r["id"] for r in all_res]
random.seed(4)
random.shuffle(ids)
random.shuffle(ids)
random.shuffle(ids)
train, validation = np.split(ids, [int(len(ids)*0.8738)])
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
for r in all_res:
if r["id"] in allowed_ids:
yield r["id"], r
else:
for r in all_res:
yield r["id"], r
|