File size: 8,729 Bytes
b829cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# pip install bs4 syntok

import os
import random

import datasets

import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer

tokenizer = Tokenizer()

_CITATION = """\
@report{Magnini2021, \
    author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza \
    and Roberto Zanoli and Fondazione Bruno Kessler}, \
    keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information}, \
    title = {The E3C Project: \
    European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus}, \
    url = {https://uts.nlm.nih.gov/uts/umls/home}, \
    year = {2021}, \
}
"""

_DESCRIPTION = """\
E3C is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) \
of semantically annotated clinical narratives to allow for the linguistic analysis, benchmarking, \
and training of information extraction systems. It consists of two types of annotations: \
(i) clinical entities (e.g., pathologies), (ii) temporal information and factuality (e.g., events). \
Researchers can use the benchmark training and test splits of our corpus to develop and test \
their own models.
"""

_URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip"

_LANGUAGES = ["English","Spanish","Basque","French","Italian"]

class E3C(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=f"{lang}", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
    ]

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "ner_clinical_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=["O","B-CLINENTITY","I-CLINENTITY"],
                    ),
                ),
                "ner_temporal_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"],
                    ),
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            citation=_CITATION,
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):

        data_dir = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name, "layer1"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_annotation", self.config.name, "layer1"),
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "E3C-Corpus-2.0.0/data_validation", self.config.name, "layer2"),
                    "split": "test",
                },
            ),
        ]

    @staticmethod
    def get_annotations(entities: ResultSet, text: str) -> list:

        return [[
            int(entity.get("begin")),
            int(entity.get("end")),
            text[int(entity.get("begin")) : int(entity.get("end"))],
        ] for entity in entities]

    def get_clinical_annotations(self, entities: ResultSet, text: str) -> list:

        return [[
            int(entity.get("begin")),
            int(entity.get("end")),
            text[int(entity.get("begin")) : int(entity.get("end"))],
            entity.get("entityID"),
        ] for entity in entities]

    def get_parsed_data(self, filepath: str):

        for root, _, files in os.walk(filepath):

            for file in files:

                with open(f"{root}/{file}") as soup_file:

                    soup = BeautifulSoup(soup_file, "xml")
                    text = soup.find("cas:Sofa").get("sofaString")

                    yield {
                        "CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text),
                        "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
                        "ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text),
                        "BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text),
                        "TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text),
                        "RML": self.get_annotations(soup.find_all("custom:RML"), text),
                        "SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text),
                        "TOKENS": self.get_annotations(soup.find_all("type4:Token"), text),
                    }

    def _generate_examples(self, filepath, split):

        all_res = []

        key = 0

        for content in self.get_parsed_data(filepath):

            for sentence in content["SENTENCE"]:

                tokens = [(
                    token.offset + sentence[0],
                    token.offset + sentence[0] + len(token.value),
                    token.value,
                ) for token in list(tokenizer.tokenize(sentence[-1]))]

                filtered_tokens = list(
                    filter(
                        lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
                        tokens,
                    )
                )

                tokens_offsets = [
                    [token[0] - sentence[0], token[1] - sentence[0]] for token in filtered_tokens
                ]

                clinical_labels = ["O"] * len(filtered_tokens)
                clinical_cuid = ["CUI_LESS"] * len(filtered_tokens)
                temporal_information_labels = ["O"] * len(filtered_tokens)

                for entity_type in ["CLINENTITY","EVENT","ACTOR","BODYPART","TIMEX3","RML"]:

                    if len(content[entity_type]) != 0:

                        for entities in list(content[entity_type]):

                            annotated_tokens = [
                                idx_token
                                for idx_token, token in enumerate(filtered_tokens)
                                if token[0] >= entities[0] and token[1] <= entities[1]
                            ]

                            for idx_token in annotated_tokens:

                                if entity_type == "CLINENTITY":
                                    if idx_token == annotated_tokens[0]:
                                        clinical_labels[idx_token] = f"B-{entity_type}"
                                    else:
                                        clinical_labels[idx_token] = f"I-{entity_type}"
                                    clinical_cuid[idx_token] = entities[-1]
                                else:
                                    if idx_token == annotated_tokens[0]:
                                        temporal_information_labels[idx_token] = f"B-{entity_type}"
                                    else:
                                        temporal_information_labels[idx_token] = f"I-{entity_type}"

                all_res.append({
                    "id": key,
                    "text": sentence[-1],
                    "tokens": list(map(lambda token: token[2], filtered_tokens)),
                    "ner_clinical_tags": clinical_labels,
                    "ner_temporal_tags": temporal_information_labels,
                })

                key += 1
        
        if split != "test":
            
            ids = [r["id"] for r in all_res]
    
            random.seed(4)
            random.shuffle(ids)
            random.shuffle(ids)
            random.shuffle(ids)
            
            train, validation = np.split(ids, [int(len(ids)*0.8738)])
    
            if split == "train":
                allowed_ids = list(train)
            elif split == "validation":
                allowed_ids = list(validation)
            
            for r in all_res:
                if r["id"] in allowed_ids:
                    yield r["id"], r
        else:
            
            for r in all_res:
                yield r["id"], r