File size: 6,481 Bytes
5ad9707 28eb071 5ad9707 28eb071 5ad9707 28eb071 5ad9707 28eb071 5ad9707 28eb071 5ad9707 d5c6f90 5ad9707 28eb071 5ad9707 28eb071 5ad9707 28eb071 ca50cdc 5ad9707 28eb071 5ad9707 28eb071 ca50cdc 28eb071 ca50cdc 28eb071 5ad9707 1ea843b 5ad9707 28eb071 ca50cdc 28eb071 5ad9707 28eb071 d5c6f90 28eb071 5ad9707 28eb071 5ad9707 28eb071 5ad9707 28eb071 5ad9707 ca50cdc 5ad9707 ca50cdc 5ad9707 ca50cdc 5ad9707 ca50cdc 5ad9707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# pip install bs4 syntok
import os
import random
import datasets
import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer
tokenizer = Tokenizer()
_CITATION = """\
@InProceedings{Kocabiyikoglu2022,
author = "Alican Kocabiyikoglu and Fran{\c c}ois Portet and Prudence Gibert and Hervé Blanchon and Jean-Marc Babouchkine and Gaëtan Gavazzi",
title = "A Spoken Drug Prescription Dataset in French for Spoken Language Understanding",
booktitle = "13th Language Resources and Evaluation Conference (LREC 2022)",
year = "2022",
location = "Marseille, France"
}
"""
_DESCRIPTION = """\
PxSLU is to the best of our knowledge, the first spoken medical drug prescriptions corpus to be distributed. It contains 4 hours of transcribed
and annotated dialogues of drug prescriptions in French acquired through an experiment with 55 participants experts and non-experts in drug prescriptions.
The automatic transcriptions were verified by human effort and aligned with semantic labels to allow training of NLP models. The data acquisition
protocol was reviewed by medical experts and permit free distribution without breach of privacy and regulation.
Overview of the Corpus
The experiment has been performed in wild conditions with naive participants and medical experts. In total, the dataset includes 1981 recordings
of 55 participants (38% non-experts, 25% doctors, 36% medical practitioners), manually transcribed and semantically annotated.
"""
_URL = "https://zenodo.org/record/6524162/files/pxslu.zip?download=1"
class PxCorpus(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"PxCorpus data"),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=["medical_prescription", "negate", "none", "replace"],
),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['O', 'B-A', 'B-cma_event', 'B-d_dos_form', 'B-d_dos_form_ext', 'B-d_dos_up', 'B-d_dos_val', 'B-dos_cond', 'B-dos_uf', 'B-dos_val', 'B-drug', 'B-dur_ut', 'B-dur_val', 'B-fasting', 'B-freq_days', 'B-freq_int_v1', 'B-freq_int_v1_ut', 'B-freq_int_v2', 'B-freq_int_v2_ut', 'B-freq_startday', 'B-freq_ut', 'B-freq_val', 'B-inn', 'B-max_unit_uf', 'B-max_unit_ut', 'B-max_unit_val', 'B-min_gap_ut', 'B-min_gap_val', 'B-qsp_ut', 'B-qsp_val', 'B-re_ut', 'B-re_val', 'B-rhythm_hour', 'B-rhythm_perday', 'B-rhythm_rec_ut', 'B-rhythm_rec_val', 'B-rhythm_tdte', 'B-roa', 'I-cma_event', 'I-d_dos_form', 'I-d_dos_form_ext', 'I-d_dos_up', 'I-d_dos_val', 'I-dos_cond', 'I-dos_uf', 'I-dos_val', 'I-drug', 'I-fasting', 'I-freq_startday', 'I-inn', 'I-rhythm_tdte', 'I-roa'],
),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
citation=_CITATION,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath_1": os.path.join(data_dir, "seq.in"),
"filepath_2": os.path.join(data_dir, "seq.label"),
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath_1": os.path.join(data_dir, "seq.in"),
"filepath_2": os.path.join(data_dir, "seq.label"),
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath_1": os.path.join(data_dir, "seq.in"),
"filepath_2": os.path.join(data_dir, "seq.label"),
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
"split": "test",
},
),
]
def getTokenTags(self, document):
tokens = []
ner_tags = []
for pair in document.split("\n"):
if len(pair) <= 0:
continue
text, label = pair.split("\t")
tokens.append(text)
ner_tags.append(label)
return tokens, ner_tags
def _generate_examples(self, filepath_1, filepath_2, filepath_3, split):
key = 0
all_res = []
f_seq_in = open(filepath_1, "r")
seq_in = f_seq_in.read().split("\n")
f_seq_in.close()
f_seq_label = open(filepath_2, "r")
seq_label = f_seq_label.read().split("\n")
f_seq_label.close()
f_in_ner = open(filepath_3, "r")
docs = f_in_ner.read().split("\n\n")
f_in_ner.close()
for idx, doc in enumerate(docs):
text = seq_in[idx]
label = seq_label[idx]
tokens, ner_tags = self.getTokenTags(docs[idx])
if len(text) <= 0 or len(label) <= 0:
continue
all_res.append({
"id": key,
"text": text,
"label": label,
"tokens": tokens,
"ner_tags": ner_tags,
})
key += 1
ids = [r["id"] for r in all_res]
random.seed(4)
random.shuffle(ids)
random.shuffle(ids)
random.shuffle(ids)
train, validation, test = np.split(ids, [int(len(ids) * .7), int(len(ids) * .8)])
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
elif split == "test":
allowed_ids = list(test)
for r in all_res:
if r["id"] in allowed_ids:
yield r["id"], r
|