File size: 6,481 Bytes
5ad9707
28eb071
 
5ad9707
28eb071
 
 
5ad9707
 
 
28eb071
5ad9707
28eb071
5ad9707
 
 
 
 
 
 
 
 
28eb071
5ad9707
 
 
d5c6f90
5ad9707
 
 
 
28eb071
5ad9707
 
28eb071
 
5ad9707
28eb071
ca50cdc
5ad9707
28eb071
 
5ad9707
28eb071
ca50cdc
28eb071
 
 
ca50cdc
28eb071
 
5ad9707
 
 
 
1ea843b
5ad9707
 
 
 
 
28eb071
 
 
ca50cdc
28eb071
 
 
 
5ad9707
28eb071
 
 
 
 
d5c6f90
28eb071
 
 
 
5ad9707
 
 
 
28eb071
 
 
 
 
5ad9707
 
 
 
28eb071
 
 
 
 
5ad9707
 
 
 
28eb071
 
 
 
5ad9707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca50cdc
5ad9707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca50cdc
5ad9707
 
 
 
 
 
 
 
ca50cdc
 
5ad9707
 
 
 
 
 
 
ca50cdc
5ad9707
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# pip install bs4 syntok

import os
import random

import datasets

import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer

tokenizer = Tokenizer()

_CITATION = """\
@InProceedings{Kocabiyikoglu2022,
  author =     "Alican Kocabiyikoglu and Fran{\c c}ois Portet and Prudence Gibert and Hervé Blanchon and Jean-Marc Babouchkine and Gaëtan Gavazzi",
  title =     "A Spoken Drug Prescription Dataset in French for Spoken Language Understanding",
  booktitle =     "13th Language Resources and Evaluation Conference (LREC 2022)",
  year =     "2022",
  location =     "Marseille, France"
}
"""

_DESCRIPTION = """\
PxSLU is to the best of our knowledge, the first spoken medical drug prescriptions corpus to be distributed. It contains 4 hours of transcribed
and annotated dialogues of drug prescriptions in French acquired through an experiment with 55 participants experts and non-experts in drug prescriptions.

The automatic transcriptions were verified by human effort and aligned with semantic labels to allow training of NLP models. The data acquisition
protocol was reviewed by medical experts and permit free distribution without breach of privacy and regulation.

Overview of the Corpus

The experiment has been performed in wild conditions with naive participants and medical experts. In total, the dataset includes 1981 recordings
of 55 participants (38% non-experts, 25% doctors, 36% medical practitioners), manually transcribed and semantically annotated.
"""

_URL = "https://zenodo.org/record/6524162/files/pxslu.zip?download=1"


class PxCorpus(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"PxCorpus data"),
    ]

    DEFAULT_CONFIG_NAME = "default"

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "label": datasets.features.ClassLabel(
                    names=["medical_prescription", "negate", "none", "replace"],
                ),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "ner_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=['O', 'B-A', 'B-cma_event', 'B-d_dos_form', 'B-d_dos_form_ext', 'B-d_dos_up', 'B-d_dos_val', 'B-dos_cond', 'B-dos_uf', 'B-dos_val', 'B-drug', 'B-dur_ut', 'B-dur_val', 'B-fasting', 'B-freq_days', 'B-freq_int_v1', 'B-freq_int_v1_ut', 'B-freq_int_v2', 'B-freq_int_v2_ut', 'B-freq_startday', 'B-freq_ut', 'B-freq_val', 'B-inn', 'B-max_unit_uf', 'B-max_unit_ut', 'B-max_unit_val', 'B-min_gap_ut', 'B-min_gap_val', 'B-qsp_ut', 'B-qsp_val', 'B-re_ut', 'B-re_val', 'B-rhythm_hour', 'B-rhythm_perday', 'B-rhythm_rec_ut', 'B-rhythm_rec_val', 'B-rhythm_tdte', 'B-roa', 'I-cma_event', 'I-d_dos_form', 'I-d_dos_form_ext', 'I-d_dos_up', 'I-d_dos_val', 'I-dos_cond', 'I-dos_uf', 'I-dos_val', 'I-drug', 'I-fasting', 'I-freq_startday', 'I-inn', 'I-rhythm_tdte', 'I-roa'],
                    ),
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            citation=_CITATION,
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):

        data_dir = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath_1": os.path.join(data_dir, "seq.in"),
                    "filepath_2": os.path.join(data_dir, "seq.label"),
                    "filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath_1": os.path.join(data_dir, "seq.in"),
                    "filepath_2": os.path.join(data_dir, "seq.label"),
                    "filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath_1": os.path.join(data_dir, "seq.in"),
                    "filepath_2": os.path.join(data_dir, "seq.label"),
                    "filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
                    "split": "test",
                },
            ),
        ]

    def getTokenTags(self, document):

        tokens = []
        ner_tags = []

        for pair in document.split("\n"):

            if len(pair) <= 0:
                continue

            text, label = pair.split("\t")
            tokens.append(text)
            ner_tags.append(label)

        return tokens, ner_tags

    def _generate_examples(self, filepath_1, filepath_2, filepath_3, split):

        key = 0
        all_res = []

        f_seq_in = open(filepath_1, "r")
        seq_in = f_seq_in.read().split("\n")
        f_seq_in.close()

        f_seq_label = open(filepath_2, "r")
        seq_label = f_seq_label.read().split("\n")
        f_seq_label.close()

        f_in_ner = open(filepath_3, "r")
        docs = f_in_ner.read().split("\n\n")
        f_in_ner.close()

        for idx, doc in enumerate(docs):

            text = seq_in[idx]
            label = seq_label[idx]

            tokens, ner_tags = self.getTokenTags(docs[idx])

            if len(text) <= 0 or len(label) <= 0:
                continue

            all_res.append({
                "id": key,
                "text": text,
                "label": label,
                "tokens": tokens,
                "ner_tags": ner_tags,
            })

            key += 1

        ids = [r["id"] for r in all_res]

        random.seed(4)
        random.shuffle(ids)
        random.shuffle(ids)
        random.shuffle(ids)

        train, validation, test = np.split(ids, [int(len(ids) * .7), int(len(ids) * .8)])

        if split == "train":
            allowed_ids = list(train)
        elif split == "validation":
            allowed_ids = list(validation)
        elif split == "test":
            allowed_ids = list(test)

        for r in all_res:
            if r["id"] in allowed_ids:
                yield r["id"], r