File size: 7,334 Bytes
49d2e69
 
 
632e487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---

license: apache-2.0
---


---
annotations_creators:

- expert-generated

language_creators:
- expert-generated
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
paperswithcode_id: null

pretty_name: BLURB (Biomedical Language Understanding and Reasoning Benchmark.)
size_categories:

- 10K<n<100K

source_datasets:

- original

task_categories:

- structure-prediction

- question-answering

- text-scoring

- text-classification

task_ids:

- named-entity-recognition

- parsing

- closed-domain-qa

- semantic-similarity-scoring

- text-scoring-other-sentence-similrity

- topic-classification---



# Dataset Card for [Dataset Name]



## Table of Contents

- [Table of Contents](#table-of-contents)

- [Dataset Description](#dataset-description)

  - [Dataset Summary](#dataset-summary)

  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)

  - [Languages](#languages)

- [Dataset Structure](#dataset-structure)

  - [Data Instances](#data-instances)

  - [Data Fields](#data-fields)

  - [Data Splits](#data-splits)

- [Dataset Creation](#dataset-creation)

  - [Curation Rationale](#curation-rationale)

  - [Source Data](#source-data)

  - [Annotations](#annotations)

  - [Personal and Sensitive Information](#personal-and-sensitive-information)

- [Considerations for Using the Data](#considerations-for-using-the-data)

  - [Social Impact of Dataset](#social-impact-of-dataset)

  - [Discussion of Biases](#discussion-of-biases)

  - [Other Known Limitations](#other-known-limitations)

- [Additional Information](#additional-information)

  - [Dataset Curators](#dataset-curators)

  - [Licensing Information](#licensing-information)

  - [Citation Information](#citation-information)

  - [Contributions](#contributions)



## Dataset Description



- **Homepage: https://microsoft.github.io/BLURB/index.html**

- **Repository:**

- **Paper: https://arxiv.org/pdf/2007.15779.pdf**

- **Leaderboard: https://microsoft.github.io/BLURB/leaderboard.html**

- **Point of Contact:**



### Dataset Summary



BLURB is a collection of resources for biomedical natural language processing. In general domains, such as newswire and the Web, comprehensive benchmarks and leaderboards such as GLUE have greatly accelerated progress in open-domain NLP. In biomedicine, however, such resources are ostensibly scarce. In the past, there have been a plethora of shared tasks in biomedical NLP, such as BioCreative, BioNLP Shared Tasks, SemEval, and BioASQ, to name just a few. These efforts have played a significant role in fueling interest and progress by the research community, but they typically focus on individual tasks. The advent of neural language models, such as BERT provides a unifying foundation to leverage transfer learning from unlabeled text to support a wide range of NLP applications. To accelerate progress in biomedical pretraining strategies and task-specific methods, it is thus imperative to create a broad-coverage benchmark encompassing diverse biomedical tasks.



Inspired by prior efforts toward this direction (e.g., BLUE), we have created BLURB (short for Biomedical Language Understanding and Reasoning Benchmark). BLURB comprises of a comprehensive benchmark for PubMed-based biomedical NLP applications, as well as a leaderboard for tracking progress by the community. BLURB includes thirteen publicly available datasets in six diverse tasks. To avoid placing undue emphasis on tasks with many available datasets, such as named entity recognition (NER), BLURB reports the macro average across all tasks as the main score. The BLURB leaderboard is model-agnostic. Any system capable of producing the test predictions using the same training and development data can participate. The main goal of BLURB is to lower the entry barrier in biomedical NLP and help accelerate progress in this vitally important field for positive societal and human impact.



### Supported Tasks and Leaderboards



|  **Dataset** |         **Task**        | **Train** | **Dev** | **Test** | **Evaluation Metrics** | **Added** |

|:------------:|:-----------------------:|:---------:|:-------:|:--------:|:----------------------:|-----------|

|   BC5-chem   |           NER           |    5203   |   5347  |   5385   |     F1 entity-level    |    Yes    |

|  BC5-disease |           NER           |    4182   |   4244  |   4424   |     F1 entity-level    |    Yes    |

| NCBI-disease |           NER           |    5134   |   787   |    960   |     F1 entity-level    |    Yes    |

|     BC2GM    |           NER           |   15197   |   3061  |   6325   |     F1 entity-level    |    Yes    |

|    JNLPBA    |           NER           |   46750   |   4551  |   8662   |     F1 entity-level    |    Yes    |

|   EBM PICO   |           PICO          |   339167  |  85321  |   16364  |   Macro F1 word-level  |     No    |

|   ChemProt   |   Relation Extraction   |   18035   |  11268  |   15745  |        Micro F1        |     No    |

|      DDI     |   Relation Extraction   |   25296   |   2496  |   5716   |        Micro F1        |     No    |

|      GAD     |   Relation Extraction   |    4261   |   535   |    534   |        Micro F1        |     No    |

|    BIOSSES   |   Sentence Similarity   |     64    |    16   |    20    |         Pearson        |     No    |

|      HoC     | Document Classification |    1295   |   186   |    371   |    Average Micro F1    |     No    |

|   PubMedQA   |    Question Answering   |    450    |    50   |    500   |        Accuracy        |     No    |

|    BioASQ    |    Question Answering   |    670    |    75   |    140   |        Accuracy        |     No    |



Datasets used in the BLURB biomedical NLP benchmark. The Train, Dev, and test splits might not be exactly identical to those proposed in BLURB.

This is something to be checked.



### Languages



English from biomedical texts



## Dataset Structure



### Data Instances



* **NER**

* **PICO**

* **Relation Extraction**

* **Sentence Similarity**

* **Document Classification**

* **Question Answering**



### Data Fields



* **NER**

  * id, ner_tags, tokens

* **PICO**

* **Relation Extraction**

* **Sentence Similarity**

* **Document Classification**

* **Question Answering**



### Data Splits



Shown in the table of supported tasks.



## Dataset Creation



### Curation Rationale



[More Information Needed]



### Source Data



#### Initial Data Collection and Normalization



[More Information Needed]



#### Who are the source language producers?



[More Information Needed]



### Annotations



#### Annotation process



[More Information Needed]



#### Who are the annotators?



[More Information Needed]



### Personal and Sensitive Information



[More Information Needed]



## Considerations for Using the Data



### Social Impact of Dataset



[More Information Needed]



### Discussion of Biases



[More Information Needed]



### Other Known Limitations



[More Information Needed]



## Additional Information



### Dataset Curators



[More Information Needed]



### Licensing Information



[More Information Needed]



### Citation Information



[More Information Needed]



### Contributions



Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.