|
"""Loading script for the BLURB (Biomedical Language Understanding and Reasoning Benchmark) |
|
benchmark for biomedical NLP.""" |
|
|
|
import json |
|
from pathlib import Path |
|
import datasets |
|
import shutil |
|
|
|
|
|
_CITATION = """\ |
|
@article{2022, |
|
title={Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing}, |
|
volume={3}, |
|
ISSN={2637-8051}, |
|
url={http://dx.doi.org/10.1145/3458754}, |
|
DOI={10.1145/3458754}, |
|
number={1}, |
|
journal={ACM Transactions on Computing for Healthcare}, |
|
publisher={Association for Computing Machinery (ACM)}, |
|
author={Gu, Yu and Tinn, Robert and Cheng, Hao and Lucas, Michael and Usuyama, Naoto and Liu, Xiaodong and Naumann, Tristan and Gao, Jianfeng and Poon, Hoifung}, |
|
year={2022}, |
|
month={Jan}, |
|
pages={1–23} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """BLURB (Biomedical Language Understanding and Reasoning Benchmark.) |
|
is a comprehensive benchmark for biomedical NLP, with 13 biomedical NLP datasets in 6 |
|
tasks (NER, PICO, Relation Extraction, Sentence similarity, document classification, question answering). |
|
Our aim is to facilitate investigations of biomedical natural language processing |
|
with a specific focus on language model pretraining and to help accelerate progress in universal Biomedical |
|
NLP applications. The table below compares the datasets comprising BLURB versus the various datasets used in |
|
previous Biomedical and Clinical BERT language models.""" |
|
|
|
_HOMEPAGE = "https://microsoft.github.io/BLURB/index.html" |
|
|
|
_LICENSE = "TBD" |
|
|
|
|
|
_VERSION = "1.0.0" |
|
|
|
DATA_DIR = "blurb/" |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
CITATION_BC5_CHEM = """@article{article, |
|
author = {Li, Jiao and Sun, Yueping and Johnson, Robin and Sciaky, Daniela and Wei, Chih-Hsuan and Leaman, Robert and Davis, Allan Peter and Mattingly, Carolyn and Wiegers, Thomas and lu, Zhiyong}, |
|
year = {2016}, |
|
month = {05}, |
|
pages = {baw068}, |
|
title = {BioCreative V CDR task corpus: a resource for chemical disease relation extraction}, |
|
volume = {2016}, |
|
journal = {Database}, |
|
doi = {10.1093/database/baw068} |
|
} |
|
""" |
|
|
|
class BlurbConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for BLURB.""" |
|
|
|
def __init__(self, task, data_url, citation, label_classes=("False", "True"), **kwargs): |
|
"""BuilderConfig for BLURB. |
|
Args: |
|
task: `string` task the dataset is used for: 'ner', 'pico', 'rel-ext', 'sent-sim', 'doc-clas', 'qa' |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_url: `string`, url to download the data files from. |
|
citation: `string`, citation for the data set. |
|
url: `string`, url for information about the data set. |
|
label_classes: `list[string]`, the list of classes for the label if the |
|
label is present as a string. Non-string labels will be cast to either |
|
'False' or 'True'. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
super(BlurbConfig, self).__init__(version=datasets.Version(_VERSION), **kwargs) |
|
self.task = task |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.citation = citation |
|
if self.task == 'ner': |
|
self.features = datasets.Features( |
|
{"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel(names=self.label_classes) |
|
)} |
|
) |
|
self.base_url = f"{self.data_url}{self.name}/" |
|
self.urls = { |
|
"train": f"{self.base_url}{'train.tsv'}", |
|
"validation": f"{self.base_url}{'devel.tsv'}", |
|
"test": f"{self.base_url}{'test.tsv'}" |
|
} |
|
|
|
|
|
class Blurb(datasets.GeneratorBasedBuilder): |
|
"""BLURB benchmark dataset for Biomedical Language Understanding and Reasoning Benchmark.""" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
BlurbConfig(name='BC5CDR-chem-IOB', task='ner', label_classes=['O', 'B-Chemical', 'I-Chemical'], |
|
data_url = "https://github.com/cambridgeltl/MTL-Bioinformatics-2016/tree/master/data/", |
|
description='BC5-CHEM', |
|
citation=CITATION_BC5_CHEM) |
|
] |
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-Chemical", |
|
"I-Chemical", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
if self.config.task == 'ner': |
|
downloaded_files = dl_manager.download_and_extract(self.config.urls) |
|
|
|
return self._ner_split_generator(downloaded_files) |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
print("Before the download") |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
if self.config.task == 'ner': |
|
self._ner_example_generator(filepath) |
|
|
|
|
|
def _ner_split_generator(self, downloaded_files): |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": downloaded_files["validation"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
|
|
def _ner_example_generator(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split("\t") |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|