Datasets:
Dr. Jorge Abreu Vicente
commited on
Commit
•
62692d2
1
Parent(s):
49d2e69
Create BLURB.py
Browse filesAdd BC5CDR-chem-IOB dataset
BLURB.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Loading script for the BLURB (Biomedical Language Understanding and Reasoning Benchmark)
|
2 |
+
benchmark for biomedical NLP."""
|
3 |
+
|
4 |
+
import json
|
5 |
+
from pathlib import Path
|
6 |
+
import datasets
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@article{2022,
|
12 |
+
title={Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing},
|
13 |
+
volume={3},
|
14 |
+
ISSN={2637-8051},
|
15 |
+
url={http://dx.doi.org/10.1145/3458754},
|
16 |
+
DOI={10.1145/3458754},
|
17 |
+
number={1},
|
18 |
+
journal={ACM Transactions on Computing for Healthcare},
|
19 |
+
publisher={Association for Computing Machinery (ACM)},
|
20 |
+
author={Gu, Yu and Tinn, Robert and Cheng, Hao and Lucas, Michael and Usuyama, Naoto and Liu, Xiaodong and Naumann, Tristan and Gao, Jianfeng and Poon, Hoifung},
|
21 |
+
year={2022},
|
22 |
+
month={Jan},
|
23 |
+
pages={1–23}
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
_DESCRIPTION = """BLURB (Biomedical Language Understanding and Reasoning Benchmark.)
|
28 |
+
is a comprehensive benchmark for biomedical NLP, with 13 biomedical NLP datasets in 6
|
29 |
+
tasks (NER, PICO, Relation Extraction, Sentence similarity, document classification, question answering).
|
30 |
+
Our aim is to facilitate investigations of biomedical natural language processing
|
31 |
+
with a specific focus on language model pretraining and to help accelerate progress in universal Biomedical
|
32 |
+
NLP applications. The table below compares the datasets comprising BLURB versus the various datasets used in
|
33 |
+
previous Biomedical and Clinical BERT language models."""
|
34 |
+
|
35 |
+
_HOMEPAGE = "https://microsoft.github.io/BLURB/index.html"
|
36 |
+
|
37 |
+
_LICENSE = "TBD"
|
38 |
+
|
39 |
+
|
40 |
+
_VERSION = "1.0.0"
|
41 |
+
|
42 |
+
DATA_DIR = "blurb/"
|
43 |
+
|
44 |
+
BASE_URL_NER = "https://github.com/cambridgeltl/MTL-Bioinformatics-2016/tree/master/data/"
|
45 |
+
|
46 |
+
logger = datasets.logging.get_logger(__name__)
|
47 |
+
|
48 |
+
CITATION_BC5_CHEM = """@article{article,
|
49 |
+
author = {Li, Jiao and Sun, Yueping and Johnson, Robin and Sciaky, Daniela and Wei, Chih-Hsuan and Leaman, Robert and Davis, Allan Peter and Mattingly, Carolyn and Wiegers, Thomas and lu, Zhiyong},
|
50 |
+
year = {2016},
|
51 |
+
month = {05},
|
52 |
+
pages = {baw068},
|
53 |
+
title = {BioCreative V CDR task corpus: a resource for chemical disease relation extraction},
|
54 |
+
volume = {2016},
|
55 |
+
journal = {Database},
|
56 |
+
doi = {10.1093/database/baw068}
|
57 |
+
}
|
58 |
+
"""
|
59 |
+
|
60 |
+
class BlurbConfig(datasets.BuilderConfig):
|
61 |
+
"""BuilderConfig for BLURB."""
|
62 |
+
|
63 |
+
def __init__(self, task, data_url, citation, url, label_classes=("False", "True"), **kwargs):
|
64 |
+
"""BuilderConfig for BLURB.
|
65 |
+
Args:
|
66 |
+
task: `string` task the dataset is used for: 'ner', 'pico', 'rel-ext', 'sent-sim', 'doc-clas', 'qa'
|
67 |
+
features: `list[string]`, list of the features that will appear in the
|
68 |
+
feature dict. Should not include "label".
|
69 |
+
data_url: `string`, url to download the data files from.
|
70 |
+
citation: `string`, citation for the data set.
|
71 |
+
url: `string`, url for information about the data set.
|
72 |
+
label_classes: `list[string]`, the list of classes for the label if the
|
73 |
+
label is present as a string. Non-string labels will be cast to either
|
74 |
+
'False' or 'True'.
|
75 |
+
**kwargs: keyword arguments forwarded to super.
|
76 |
+
"""
|
77 |
+
# Version history:
|
78 |
+
super(BlurbConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
79 |
+
self.task = task
|
80 |
+
self.label_classes = label_classes
|
81 |
+
self.data_url = data_url
|
82 |
+
self.citation = citation
|
83 |
+
if self.task == 'ner':
|
84 |
+
self.features = datasets.Features(
|
85 |
+
{"id": datasets.Value("string"),
|
86 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
87 |
+
"ner_tags": datasets.Sequence(
|
88 |
+
datasets.features.ClassLabel(names=self.label_classes)
|
89 |
+
)}
|
90 |
+
)
|
91 |
+
self.base_url = f"{BASE_URL_NER}{self.name}/"
|
92 |
+
self.urls = {
|
93 |
+
"train": f"{self.base_url}{'train.tsv'}",
|
94 |
+
"validation": f"{self.base_url}{'devel.tsv'}",
|
95 |
+
"test": f"{self.base_url}{'test.tsv'}"
|
96 |
+
}
|
97 |
+
|
98 |
+
|
99 |
+
class Blurb(datasets.GeneratorBasedBuilder):
|
100 |
+
"""BLURB benchmark dataset for Biomedical Language Understanding and Reasoning Benchmark."""
|
101 |
+
|
102 |
+
VERSION = datasets.Version("1.0.0")
|
103 |
+
|
104 |
+
BUILDER_CONFIGS = [
|
105 |
+
BlurbConfig(name='BC5CDR-chem-IOB', task='ner', label_classes=['O', 'B-Chemical', 'I-Chemical'],
|
106 |
+
version=datasets.Version(_VERSION),
|
107 |
+
description='BC5-CHEM',
|
108 |
+
citation=CITATION_BC5_CHEM)
|
109 |
+
]
|
110 |
+
|
111 |
+
|
112 |
+
def _info(self):
|
113 |
+
return datasets.DatasetInfo(
|
114 |
+
description=_DESCRIPTION,
|
115 |
+
features=datasets.Features(
|
116 |
+
{
|
117 |
+
"id": datasets.Value("string"),
|
118 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
119 |
+
"ner_tags": datasets.Sequence(
|
120 |
+
datasets.features.ClassLabel(
|
121 |
+
names=[
|
122 |
+
"O",
|
123 |
+
"B-Chemical",
|
124 |
+
"I-Chemical",
|
125 |
+
]
|
126 |
+
)
|
127 |
+
),
|
128 |
+
}
|
129 |
+
),
|
130 |
+
supervised_keys=None,
|
131 |
+
homepage=_HOMEPAGE,
|
132 |
+
citation=_CITATION,
|
133 |
+
)
|
134 |
+
|
135 |
+
def _split_generators(self, dl_manager):
|
136 |
+
"""Returns SplitGenerators."""
|
137 |
+
|
138 |
+
if self.config.task == 'ner':
|
139 |
+
downloaded_files = dl_manager.download_and_extract(self.config.urls)
|
140 |
+
|
141 |
+
return _self.ner_split_generator(downloaded_files)
|
142 |
+
|
143 |
+
|
144 |
+
def _generate_examples(self, filepath):
|
145 |
+
print("Before the download")
|
146 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
147 |
+
|
148 |
+
if self.config.task == 'ner':
|
149 |
+
self._ner_example_generator(filepath)
|
150 |
+
|
151 |
+
|
152 |
+
def _ner_split_generator(self, downloaded_files):
|
153 |
+
return [
|
154 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
155 |
+
gen_kwargs={"filepath": downloaded_files["train"]}),
|
156 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION,
|
157 |
+
gen_kwargs={"filepath": downloaded_files["validation"]}),
|
158 |
+
datasets.SplitGenerator(name=datasets.Split.TEST,
|
159 |
+
gen_kwargs={"filepath": downloaded_files["test"]}),
|
160 |
+
]
|
161 |
+
|
162 |
+
|
163 |
+
def _ner_example_generator(self, filepath):
|
164 |
+
with open(filepath, encoding="utf-8") as f:
|
165 |
+
guid = 0
|
166 |
+
tokens = []
|
167 |
+
ner_tags = []
|
168 |
+
for line in f:
|
169 |
+
if line == "" or line == "\n":
|
170 |
+
if tokens:
|
171 |
+
yield guid, {
|
172 |
+
"id": str(guid),
|
173 |
+
"tokens": tokens,
|
174 |
+
"ner_tags": ner_tags,
|
175 |
+
}
|
176 |
+
guid += 1
|
177 |
+
tokens = []
|
178 |
+
ner_tags = []
|
179 |
+
else:
|
180 |
+
# tokens are tab separated
|
181 |
+
splits = line.split("\t")
|
182 |
+
tokens.append(splits[0])
|
183 |
+
ner_tags.append(splits[1].rstrip())
|
184 |
+
# last example
|
185 |
+
yield guid, {
|
186 |
+
"id": str(guid),
|
187 |
+
"tokens": tokens,
|
188 |
+
"ner_tags": ner_tags,
|
189 |
+
}
|