File size: 6,137 Bytes
16d88ff 4d089c9 16d88ff 4d089c9 16d88ff 4d089c9 16d88ff 4d089c9 16d88ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
"""Loading script for the biolang dataset for language modeling in biology."""
from __future__ import absolute_import, division, print_function
import json
from pathlib import Path
import datasets
import shutil
_CITATION = """\
@Unpublished{
huggingface: dataset,
title = {biolang},
authors={Thomas Lemberger, EMBO},
year={2021}
}
"""
_DESCRIPTION = """\
This dataset is based on abstracts from the open access section of EuropePubMed Central to train language models in the domain of biology.
"""
_HOMEPAGE = "https://europepmc.org/downloads/openaccess"
_LICENSE = "CC BY 4.0"
_URLs = {
"biolang": "https://huggingface.co/datasets/EMBO/biolang/resolve/main/oapmc_abstracts_figs.zip",
}
class BioLang(datasets.GeneratorBasedBuilder):
"""BioLang: a dataset to train language models in biology."""
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="MLM", version="0.0.1", description="Dataset for general masked language model."),
datasets.BuilderConfig(name="DET", version="0.0.1", description="Dataset for part-of-speech (determinant) masked language model."),
datasets.BuilderConfig(name="VERB", version="0.0.1", description="Dataset for part-of-speech (verbs) masked language model."),
datasets.BuilderConfig(name="SMALL", version="0.0.1", description="Dataset for part-of-speech (determinants, conjunctions, prepositions, pronouns) masked language model."),
]
DEFAULT_CONFIG_NAME = "MLM" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "MLM":
features = datasets.Features(
{
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
"special_tokens_mask": datasets.Sequence(feature=datasets.Value("int8")),
}
)
elif self.config.name in ["DET", "VERB", "SMALL"]:
features = datasets.Features({
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=('input_ids', 'pos_mask'),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.data_dir:
data_dir = self.config.data_dir
else:
url = _URLs["biolang"]
data_dir = dl_manager.download_and_extract(url)
data_dir += "/oapmc_abstracts_figs"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir + "/train.jsonl",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir + "/test.jsonl",
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir + "/eval.jsonl",
"split": "eval",
},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
if self.config.name == "MLM":
yield id_, {
"input_ids": data["input_ids"],
"special_tokens_mask": data['special_tokens_mask']
}
elif self.config.name == "DET":
pos_mask = [0] * len(data['input_ids'])
for idx, label in enumerate(data['label_ids']):
if label == 'DET':
pos_mask[idx] = 1
yield id_, {
"input_ids": data['input_ids'],
"tag_mask": pos_mask,
}
elif self.config.name == "VERB":
pos_mask = [0] * len(data['input_ids'])
for idx, label in enumerate(data['label_ids']):
if label == 'VERB':
pos_mask[idx] = 1
yield id_, {
"input_ids": data['input_ids'],
"tag_mask": pos_mask,
}
elif self.config.name == "SMALL":
pos_mask = [0] * len(data['input_ids'])
for idx, label in enumerate(data['label_ids']):
if label in ['DET', 'CCONJ', 'SCONJ', 'ADP', 'PRON']:
pos_mask[idx] = 1
yield id_, {
"input_ids": data['input_ids'],
"tag_mask": pos_mask,
}
|