File size: 6,137 Bytes
16d88ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d089c9
16d88ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d089c9
16d88ff
 
 
 
 
 
4d089c9
16d88ff
 
 
 
 
 
4d089c9
16d88ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py

"""Loading script for the biolang dataset for language modeling in biology."""

from __future__ import absolute_import, division, print_function

import json
from pathlib import Path
import datasets
import shutil

_CITATION = """\
@Unpublished{
    huggingface: dataset,
    title = {biolang},
    authors={Thomas Lemberger, EMBO},
    year={2021}
}
"""

_DESCRIPTION = """\
This dataset is based on abstracts from the open access section of EuropePubMed Central to train language models in the domain of biology. 
"""

_HOMEPAGE = "https://europepmc.org/downloads/openaccess"

_LICENSE = "CC BY 4.0"

_URLs = {
    "biolang": "https://huggingface.co/datasets/EMBO/biolang/resolve/main/oapmc_abstracts_figs.zip",
}


class BioLang(datasets.GeneratorBasedBuilder):
    """BioLang: a dataset to train language models in biology."""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="MLM", version="0.0.1", description="Dataset for general masked language model."),
        datasets.BuilderConfig(name="DET", version="0.0.1", description="Dataset for part-of-speech (determinant) masked language model."),
        datasets.BuilderConfig(name="VERB", version="0.0.1", description="Dataset for part-of-speech (verbs) masked language model."),
        datasets.BuilderConfig(name="SMALL", version="0.0.1", description="Dataset for part-of-speech (determinants, conjunctions, prepositions, pronouns) masked language model."),
    ]

    DEFAULT_CONFIG_NAME = "MLM"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        if self.config.name == "MLM":
            features = datasets.Features(
                {
                    "input_ids": datasets.Sequence(feature=datasets.Value("int32")),
                    "special_tokens_mask": datasets.Sequence(feature=datasets.Value("int8")),
                }
            )
        elif self.config.name in ["DET", "VERB", "SMALL"]:
            features = datasets.Features({
                "input_ids": datasets.Sequence(feature=datasets.Value("int32")),
                "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
            })

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=('input_ids', 'pos_mask'),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        if self.config.data_dir:
            data_dir = self.config.data_dir
        else:
            url = _URLs["biolang"]
            data_dir = dl_manager.download_and_extract(url)
            data_dir += "/oapmc_abstracts_figs"
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir + "/train.jsonl",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir + "/test.jsonl",
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir + "/eval.jsonl",
                    "split": "eval",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """ Yields examples. """
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                if self.config.name == "MLM":
                    yield id_, {
                        "input_ids": data["input_ids"],
                        "special_tokens_mask": data['special_tokens_mask']
                    }
                elif self.config.name == "DET":
                    pos_mask = [0] * len(data['input_ids'])
                    for idx, label in enumerate(data['label_ids']):
                        if label == 'DET':
                            pos_mask[idx] = 1
                    yield id_, {
                        "input_ids": data['input_ids'],
                        "tag_mask": pos_mask,
                    }
                elif self.config.name == "VERB":
                    pos_mask = [0] * len(data['input_ids'])
                    for idx, label in enumerate(data['label_ids']):
                        if label == 'VERB':
                            pos_mask[idx] = 1
                    yield id_, {
                        "input_ids": data['input_ids'],
                        "tag_mask": pos_mask,
                    }
                elif self.config.name == "SMALL":
                    pos_mask = [0] * len(data['input_ids'])
                    for idx, label in enumerate(data['label_ids']):
                        if label in ['DET', 'CCONJ', 'SCONJ', 'ADP', 'PRON']:
                            pos_mask[idx] = 1
                    yield id_, {
                        "input_ids": data['input_ids'],
                        "tag_mask": pos_mask,
                    }