|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Loading script for the biolang dataset for language modeling in biology.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
from pathlib import Path |
|
import datasets |
|
import shutil |
|
|
|
_CITATION = """\ |
|
@Unpublished{ |
|
huggingface: dataset, |
|
title = {biolang}, |
|
authors={Thomas Lemberger, EMBO}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is based on abstracts from the open access section of EuropePubMed Central to train language models in the domain of biology. |
|
""" |
|
|
|
_HOMEPAGE = "https://europepmc.org/downloads/openaccess" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URLs = { |
|
"biolang": "https://huggingface.co/datasets/EMBO/biolang/resolve/main/oapmc_abstracts_figs.zip", |
|
} |
|
|
|
|
|
class BioLang(datasets.GeneratorBasedBuilder): |
|
"""BioLang: a dataset to train language models in biology.""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="MLM", version="0.0.1", description="Dataset for general masked language model."), |
|
datasets.BuilderConfig(name="DET", version="0.0.1", description="Dataset for part-of-speech (determinant) masked language model."), |
|
datasets.BuilderConfig(name="VERB", version="0.0.1", description="Dataset for part-of-speech (verbs) masked language model."), |
|
datasets.BuilderConfig(name="SMALL", version="0.0.1", description="Dataset for part-of-speech (determinants, conjunctions, prepositions, pronouns) masked language model."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "MLM" |
|
|
|
def _info(self): |
|
if self.config.name == "MLM": |
|
features = datasets.Features( |
|
{ |
|
"input_ids": datasets.Sequence(feature=datasets.Value("int32")), |
|
"special_tokens_mask": datasets.Sequence(feature=datasets.Value("int8")), |
|
} |
|
) |
|
elif self.config.name in ["DET", "VERB", "SMALL"]: |
|
features = datasets.Features({ |
|
"input_ids": datasets.Sequence(feature=datasets.Value("int32")), |
|
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=('input_ids', 'pos_mask'), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir: |
|
data_dir = self.config.data_dir |
|
else: |
|
url = _URLs["biolang"] |
|
data_dir = dl_manager.download_and_extract(url) |
|
data_dir += "/oapmc_abstracts_figs" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir + "/train.jsonl", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir + "/test.jsonl", |
|
"split": "test" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir + "/eval.jsonl", |
|
"split": "eval", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples. """ |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
if self.config.name == "MLM": |
|
yield id_, { |
|
"input_ids": data["input_ids"], |
|
"special_tokens_mask": data['special_tokens_mask'] |
|
} |
|
elif self.config.name == "DET": |
|
pos_mask = [0] * len(data['input_ids']) |
|
for idx, label in enumerate(data['label_ids']): |
|
if label == 'DET': |
|
pos_mask[idx] = 1 |
|
yield id_, { |
|
"input_ids": data['input_ids'], |
|
"tag_mask": pos_mask, |
|
} |
|
elif self.config.name == "VERB": |
|
pos_mask = [0] * len(data['input_ids']) |
|
for idx, label in enumerate(data['label_ids']): |
|
if label == 'VERB': |
|
pos_mask[idx] = 1 |
|
yield id_, { |
|
"input_ids": data['input_ids'], |
|
"tag_mask": pos_mask, |
|
} |
|
elif self.config.name == "SMALL": |
|
pos_mask = [0] * len(data['input_ids']) |
|
for idx, label in enumerate(data['label_ids']): |
|
if label in ['DET', 'CCONJ', 'SCONJ', 'ADP', 'PRON']: |
|
pos_mask[idx] = 1 |
|
yield id_, { |
|
"input_ids": data['input_ids'], |
|
"tag_mask": pos_mask, |
|
} |
|
|