File size: 5,363 Bytes
062c584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
YAML tags:
- copy-paste the tags obtained with the tagging app: https://github.com/huggingface/datasets-tagging
---

# Dataset Card for [Dataset Name]

## Table of Contents
- [Dataset Card for [Dataset Name]](#dataset-card-for-dataset-name)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

This dataset is based on the content of the SourceData (https://sourcedata.embo.org) database, which contains manually annotated figure legends written in English and extracted from scientific papers in the domain of cell and molecular biology (Liechti et al, Nature Methods, 2017, https://doi.org/10.1038/nmeth.4471). The dataset was built to train models for the automatic extraction of a knowledge graph based from the scientific literature. The dataset can be used to train models for text segmentation, named entity recognition and semantic role labeling. The dataset is pre-tokenized with the `roberta-base` tokenizer.

### Supported Tasks and Leaderboards

Tags are provided as [IOB2-style tags](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)).

`PANELIZATION`: figure captions (or figure legends) are usually composed of segments that each refer to one of several 'panels' of the full figure. Panels tend to represent results obtained with a coherent method and depicts data points that can be meaningfully compared to each other. `PANELIZATION` provide the start (B-PANEL_START) of these segments and allow to train for recogntion of the boundary between consecutive panel lengends.

`NER`: biological and chemical entities are labeled. Specifically the following entities are tagged:
- `SMALL_MOLECULE`: small molecules
- `GENEPROD`: gene products (genes and proteins)
- `SUBCELLULAR`: subcellular components
- `CELL`: cell types and cell lines.
- `TISSUE`: tissues and organs
- `ORGANISM`: species
- `EXP_ASSAY`: experimental assays

`ROLES`: the role of entities with regard to the causal hypotheses tested in the reported results. The tags are:
- `CONTROLLED_VAR`: entities that are associated with experimental variables and that subjected to controlled and targeted perturbations.
- `MEASURED_VAR`: entities that are associated with the variables measured and the object of the measurements.

`BORING`: entities are marked with the tag `BORING` when they are more of descriptive value and not directly associated with causal hypotheses ('boring' is not an ideal choice of word, but it is short...). Typically, these entities are so-called 'reporter' geneproducts, entities used as common baseline across samples, or specify the context of the experiment (cellular system, species, etc...).


### Languages

The text in the dataset is English.

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

- `tokens`:
- `input_ids`:
- `label_ids`:
  - `entity_types`:
  - `geneprod_roles`:
  - `boring`:
  - `panel_start`: 

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.