Datasets:
File size: 8,206 Bytes
dd93e10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and Thomas Lemberger.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SourceDataNLP dataset."""
from __future__ import absolute_import, division, print_function
import json
from pathlib import Path
import datasets
_NER_LABEL_NAMES = [
"O",
"I-SMALL_MOLECULE",
"B-SMALL_MOLECULE",
"I-GENEPROD",
"B-GENEPROD",
"I-SUBCELLULAR",
"B-SUBCELLULAR",
"I-CELL",
"B-CELL",
"I-TISSUE",
"B-TISSUE",
"I-ORGANISM",
"B-ORGANISM",
"I-EXP_ASSAY",
"B-EXP_ASSAY",
]
_SEMANTIC_ROLES_LABEL_NAMES = ["O", "I-CONTROLLED_VAR", "B-CONTROLLED_VAR", "I-MEASURED_VAR", "B-MEASURED_VAR"]
_BORING_LABEL_NAMES = ["O", "I-BORING", "B-BORING"]
_PANEL_START_NAMES = ["O", "B-PANEL_START"]
_CITATION = """\
@Unpublished{
huggingface: dataset,
title = {SourceData NLP},
authors={Thomas Lemberger, EMBO},
year={2021}
}
"""
_DESCRIPTION = """\
This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain.
"""
_HOMEPAGE = "https://huggingface.co/datasets/EMBO/sd-nlp"
_LICENSE = "CC-BY 4.0"
_URLS = {
"NER": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_panels.zip",
"ROLES": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_panels.zip",
"BORING": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_panels.zip",
"PANELIZATION": "https://huggingface.co/datasets/EMBO/sd-nlp/resolve/main/sd_figs.zip",
}
class SourceDataNLP(datasets.GeneratorBasedBuilder):
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="NER", version="0.0.1", description="Dataset for entity recognition"),
datasets.BuilderConfig(name="ROLES", version="0.0.1", description="Dataset for semantic roles."),
datasets.BuilderConfig(name="BORING", version="0.0.1", description="Dataset for semantic roles."),
datasets.BuilderConfig(
name="PANELIZATION",
version="0.0.1",
description="Dataset for figure legend segmentation into panel-specific legends.",
),
]
DEFAULT_CONFIG_NAME = "NER"
def _info(self):
if self.config.name == "NER":
features = datasets.Features(
{
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(num_classes=len(_NER_LABEL_NAMES), names=_NER_LABEL_NAMES)
),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
}
)
elif self.config.name == "ROLES":
features = datasets.Features(
{
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(_SEMANTIC_ROLES_LABEL_NAMES), names=_SEMANTIC_ROLES_LABEL_NAMES
)
),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
}
)
elif self.config.name == "BORING":
features = datasets.Features(
{
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(num_classes=len(_BORING_LABEL_NAMES), names=_BORING_LABEL_NAMES)
),
}
)
elif self.config.name == "PANELIZATION":
features = datasets.Features(
{
"input_ids": datasets.Sequence(feature=datasets.Value("int32")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(num_classes=len(_PANEL_START_NAMES), names=_PANEL_START_NAMES)
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("input_ids", "labels"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators.
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url."""
if self.config.data_dir:
data_dir = self.config.data_dir
else:
url = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(url)
if self.config.name in ["NER", "ROLES", "BORING"]:
data_dir += "/sd_panels"
elif self.config.name == "PANELIZATION":
data_dir += "/sd_figs"
else:
raise ValueError(f"unkonwn config name: {self.config.name}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir + "/train.jsonl",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir + "/test.jsonl",
"split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir + "/eval.jsonl",
"split": "eval",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
The key is not important, it's more here for legacy reason (legacy from tfds)"""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
if self.config.name == "NER":
labels_type = data["label_ids"]["entity_types"]
tag_mask = [0 if tag == "O" else 1 for tag in labels_type]
yield id_, {"input_ids": data["input_ids"], "labels": labels_type, "tag_mask": tag_mask}
elif self.config.name == "ROLES":
labels_type = data["label_ids"]["entity_types"]
geneprod = ["B-GENEPROD", "I-GENEPROD", "B-PROTEIN", "I-PROTEIN", "B-GENE", "I-GENE"]
tag_mask = [1 if t in geneprod else 0 for t in labels_type]
yield id_, {
"input_ids": data["input_ids"],
"labels": data["label_ids"]["geneprod_roles"],
"tag_mask": tag_mask,
}
elif self.config.name == "BORING":
yield id_, {"input_ids": data["input_ids"], "labels": data["label_ids"]["boring"]}
elif self.config.name == "PANELIZATION":
yield id_, {
"input_ids": data["input_ids"],
"labels": data["label_ids"]["panel_start"],
}
|