guardian_authorship / guardian_authorship.py
albertvillanova's picture
Fix missing tags in dataset cards (#4908)
99a2f49
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is an authorship attribution dataset based on the work of Stamatatos 2013. """
import os
import datasets
_CITATION = """\
@article{article,
author = {Stamatatos, Efstathios},
year = {2013},
month = {01},
pages = {421-439},
title = {On the robustness of authorship attribution based on character n-gram features},
volume = {21},
journal = {Journal of Law and Policy}
}
@inproceedings{stamatatos2017authorship,
title={Authorship attribution using text distortion},
author={Stamatatos, Efstathios},
booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},
volume={1}
pages={1138--1149},
year={2017}
}
"""
_DESCRIPTION = """\
A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013.
1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).
2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).
3- The same-topic/genre scenario is created by grouping all the datasts as follows.
For ex., to use same_topic and split the data 60-40 use:
train_ds = load_dataset('guardian_authorship', name="cross_topic_<<#>>",
split='train[:60%]+validation[:60%]+test[:60%]')
tests_ds = load_dataset('guardian_authorship', name="cross_topic_<<#>>",
split='train[-40%:]+validation[-40%:]+test[-40%:]')
IMPORTANT: train+validation+test[:60%] will generate the wrong splits because the data is imbalanced
* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples
"""
_URL = "https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1"
# Using a specific configuration class is optional, you can also use the base class if you don't need
# to add specific attributes.
# here we give an example for three sub-set of the dataset with difference sizes.
class GuardianAuthorshipConfig(datasets.BuilderConfig):
"""BuilderConfig for NewDataset"""
def __init__(self, train_folder, valid_folder, test_folder, **kwargs):
"""
Args:
Train_folder: Topic/genre used for training
valid_folder: ~ ~ for validation
test_folder: ~ ~ for testing
**kwargs: keyword arguments forwarded to super.
"""
super(GuardianAuthorshipConfig, self).__init__(**kwargs)
self.train_folder = train_folder
self.valid_folder = valid_folder
self.test_folder = test_folder
class GuardianAuthorship(datasets.GeneratorBasedBuilder):
"""dataset for same- and cross-topic authorship attribution"""
config_counter = 0
BUILDER_CONFIG_CLASS = GuardianAuthorshipConfig
BUILDER_CONFIGS = [
# cross-topic
GuardianAuthorshipConfig(
name=f"cross_topic_{1}",
version=datasets.Version(f"{1}.0.0", description=f"The Original DS with the cross-topic scenario no.{1}"),
train_folder="Politics",
valid_folder="Society",
test_folder="UK,World",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{2}",
version=datasets.Version(f"{2}.0.0", description=f"The Original DS with the cross-topic scenario no.{2}"),
train_folder="Politics",
valid_folder="UK",
test_folder="Society,World",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{3}",
version=datasets.Version(f"{3}.0.0", description=f"The Original DS with the cross-topic scenario no.{3}"),
train_folder="Politics",
valid_folder="World",
test_folder="Society,UK",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{4}",
version=datasets.Version(f"{4}.0.0", description=f"The Original DS with the cross-topic scenario no.{4}"),
train_folder="Society",
valid_folder="Politics",
test_folder="UK,World",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{5}",
version=datasets.Version(f"{5}.0.0", description=f"The Original DS with the cross-topic scenario no.{5}"),
train_folder="Society",
valid_folder="UK",
test_folder="Politics,World",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{6}",
version=datasets.Version(f"{6}.0.0", description=f"The Original DS with the cross-topic scenario no.{6}"),
train_folder="Society",
valid_folder="World",
test_folder="Politics,UK",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{7}",
version=datasets.Version(f"{7}.0.0", description=f"The Original DS with the cross-topic scenario no.{7}"),
train_folder="UK",
valid_folder="Politics",
test_folder="Society,World",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{8}",
version=datasets.Version(f"{8}.0.0", description=f"The Original DS with the cross-topic scenario no.{8}"),
train_folder="UK",
valid_folder="Society",
test_folder="Politics,World",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{9}",
version=datasets.Version(f"{9}.0.0", description=f"The Original DS with the cross-topic scenario no.{9}"),
train_folder="UK",
valid_folder="World",
test_folder="Politics,Society",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{10}",
version=datasets.Version(
f"{10}.0.0", description=f"The Original DS with the cross-topic scenario no.{10}"
),
train_folder="World",
valid_folder="Politics",
test_folder="Society,UK",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{11}",
version=datasets.Version(
f"{11}.0.0", description=f"The Original DS with the cross-topic scenario no.{11}"
),
train_folder="World",
valid_folder="Society",
test_folder="Politics,UK",
),
GuardianAuthorshipConfig(
name=f"cross_topic_{12}",
version=datasets.Version(
f"{12}.0.0", description=f"The Original DS with the cross-topic scenario no.{12}"
),
train_folder="World",
valid_folder="UK",
test_folder="Politics,Society",
),
# # cross-genre
GuardianAuthorshipConfig(
name=f"cross_genre_{1}",
version=datasets.Version(f"{1}.0.0", description=f"The Original DS with the cross-genre scenario no.{1}"),
train_folder="Books",
valid_folder="Politics",
test_folder="Society,UK,World",
),
GuardianAuthorshipConfig(
name=f"cross_genre_{2}",
version=datasets.Version(f"{2}.0.0", description=f"The Original DS with the cross-genre scenario no.{2}"),
train_folder="Books",
valid_folder="Society",
test_folder="Politics,UK,World",
),
GuardianAuthorshipConfig(
name=f"cross_genre_{3}",
version=datasets.Version(f"{3}.0.0", description=f"The Original DS with the cross-genre scenario no.{3}"),
train_folder="Books",
valid_folder="UK",
test_folder="Politics,Society,World",
),
GuardianAuthorshipConfig(
name=f"cross_genre_{4}",
version=datasets.Version(f"{4}.0.0", description=f"The Original DS with the cross-genre scenario no.{4}"),
train_folder="Books",
valid_folder="World",
test_folder="Politics,Society,UK",
),
]
def _info(self):
# Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=datasets.Features(
{
# These are the features of your dataset like images, labels ...
# There are 13 authors in this dataset
"author": datasets.features.ClassLabel(
names=[
"catherinebennett",
"georgemonbiot",
"hugoyoung",
"jonathanfreedland",
"martinkettle",
"maryriddell",
"nickcohen",
"peterpreston",
"pollytoynbee",
"royhattersley",
"simonhoggart",
"willhutton",
"zoewilliams",
]
),
# There are book reviews, and articles on the following four topics
"topic": datasets.features.ClassLabel(names=["Politics", "Society", "UK", "World", "Books"]),
"article": datasets.Value("string"),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=[("article", "author")],
# Homepage of the dataset for documentation
homepage="http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
# This folder contains the orginal/2013 dataset
data_dir = os.path.join(dl_dir, "Guardian", "Guardian_original")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.train_folder, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.test_folder, "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.valid_folder, "split": "valid"},
),
]
def _generate_examples(self, data_dir, samples_folders, split):
"""Yields examples."""
# Yields (key, example) tuples from the dataset
# Training and validation are on 1 topic/genre, while testing is on multiple topics
# We convert the sample folders into list (from string)
if samples_folders.count(",") == 0:
samples_folders = [samples_folders]
else:
samples_folders = samples_folders.split(",")
# the dataset is structured as:
# |-Topic1
# |---author 1
# |------- article-1
# |------- article-2
# |---author 2
# |------- article-1
# |------- article-2
# |-Topic2
# ...
for topic in samples_folders:
full_path = os.path.join(data_dir, topic)
for author in os.listdir(full_path):
list_articles = os.listdir(os.path.join(full_path, author))
if len(list_articles) == 0:
# Some authors have no articles on certain topics
continue
for id_, article in enumerate(list_articles):
path_2_author = os.path.join(full_path, author)
path_2_article = os.path.join(path_2_author, article)
with open(path_2_article, "r", encoding="utf8", errors="ignore") as f:
art = f.readlines()
# The whole article is stored as one line. We access the 1st element of the list
# to store it as string, not as a list
yield f"{topic}_{author}_{id_}", {
"article": art[0],
"author": author,
"topic": topic,
}