Datasets:
Commit
•
81f0d09
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/cross_genre_1/13.0.0/dummy_data.zip +3 -0
- dummy/cross_genre_2/14.0.0/dummy_data.zip +3 -0
- dummy/cross_genre_3/15.0.0/dummy_data.zip +3 -0
- dummy/cross_genre_4/16.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_1/1.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_10/10.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_11/11.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_12/12.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_2/2.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_3/3.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_4/4.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_5/5.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_6/6.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_7/7.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_8/8.0.0/dummy_data.zip +3 -0
- dummy/cross_topic_9/9.0.0/dummy_data.zip +3 -0
- guardian_authorship.py +352 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cross_topic_1": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_1", "version": {"version_str": "1.0.0", "description": "The Original DS with the cross-topic scenario no.1", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1283126, "num_examples": 207, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_genre_1": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_genre_1", "version": {"version_str": "13.0.0", "description": "The Original DS with the cross-genre scenario no.1", "datasets_version_to_prepare": null, "major": 13, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 406144, "num_examples": 63, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1657512, "num_examples": 269, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2740710, "size_in_bytes": 5841459}, "cross_topic_2": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_2", "version": {"version_str": "2.0.0", "description": "The Original DS with the cross-topic scenario no.2", "datasets_version_to_prepare": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1104764, "num_examples": 179, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_3": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_3", "version": {"version_str": "3.0.0", "description": "The Original DS with the cross-topic scenario no.3", "datasets_version_to_prepare": null, "major": 3, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 927138, "num_examples": 152, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_4": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_4", "version": {"version_str": "4.0.0", "description": "The Original DS with the cross-topic scenario no.4", "datasets_version_to_prepare": null, "major": 4, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1283126, "num_examples": 207, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_5": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_5", "version": {"version_str": "5.0.0", "description": "The Original DS with the cross-topic scenario no.5", "datasets_version_to_prepare": null, "major": 5, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1407428, "num_examples": 229, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_6": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_6", "version": {"version_str": "6.0.0", "description": "The Original DS with the cross-topic scenario no.6", "datasets_version_to_prepare": null, "major": 6, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1229802, "num_examples": 202, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_7": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_7", "version": {"version_str": "7.0.0", "description": "The Original DS with the cross-topic scenario no.7", "datasets_version_to_prepare": null, "major": 7, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1104764, "num_examples": 179, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_8": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_8", "version": {"version_str": "8.0.0", "description": "The Original DS with the cross-topic scenario no.8", "datasets_version_to_prepare": null, "major": 8, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1407428, "num_examples": 229, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_9": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_9", "version": {"version_str": "9.0.0", "description": "The Original DS with the cross-topic scenario no.9", "datasets_version_to_prepare": null, "major": 9, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1051440, "num_examples": 174, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_10": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_10", "version": {"version_str": "10.0.0", "description": "The Original DS with the cross-topic scenario no.10", "datasets_version_to_prepare": null, "major": 10, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 927138, "num_examples": 152, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 677054, "num_examples": 112, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_11": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_11", "version": {"version_str": "11.0.0", "description": "The Original DS with the cross-topic scenario no.11", "datasets_version_to_prepare": null, "major": 11, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1229802, "num_examples": 202, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_topic_12": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_topic_12", "version": {"version_str": "12.0.0", "description": "The Original DS with the cross-topic scenario no.12", "datasets_version_to_prepare": null, "major": 12, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1051440, "num_examples": 174, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2334570, "size_in_bytes": 5435319}, "cross_genre_2": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_genre_2", "version": {"version_str": "14.0.0", "description": "The Original DS with the cross-genre scenario no.2", "datasets_version_to_prepare": null, "major": 14, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 406144, "num_examples": 63, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1960176, "num_examples": 319, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 374390, "num_examples": 62, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2740710, "size_in_bytes": 5841459}, "cross_genre_3": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_genre_3", "version": {"version_str": "15.0.0", "description": "The Original DS with the cross-genre scenario no.3", "datasets_version_to_prepare": null, "major": 15, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 406144, "num_examples": 63, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1781814, "num_examples": 291, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 552752, "num_examples": 90, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2740710, "size_in_bytes": 5841459}, "cross_genre_4": {"description": "A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013. \n1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).\n2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).\n\n3- The same-topic/genre scenario is created by grouping all the datasts as follows. \nFor ex., to use same_topic and split the data 60-40 use:\ntrain_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[:60%]+validation[:60%]+test[:60%]')\ntests_ds = load_dataset('guardian_authorship', name=\"cross_topic_<<#>>\", \n split='train[-40%:]+validation[-40%:]+test[-40%:]') \n\nIMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced\n\n* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples \n", "citation": "@article{article,\n author = {Stamatatos, Efstathios},\n year = {2013},\n month = {01},\n pages = {421-439},\n title = {On the robustness of authorship attribution based on character n-gram features},\n volume = {21},\n journal = {Journal of Law and Policy}\n}\n\n@inproceedings{stamatatos2017authorship,\n title={Authorship attribution using text distortion},\n author={Stamatatos, Efstathios},\n booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},\n volume={1}\n pages={1138--1149},\n year={2017}\n}\n", "homepage": "http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf", "license": "", "features": {"author": {"num_classes": 13, "names": ["catherinebennett", "georgemonbiot", "hugoyoung", "jonathanfreedland", "martinkettle", "maryriddell", "nickcohen", "peterpreston", "pollytoynbee", "royhattersley", "simonhoggart", "willhutton", "zoewilliams"], "names_file": null, "id": null, "_type": "ClassLabel"}, "topic": {"num_classes": 5, "names": ["Politics", "Society", "UK", "World", "Books"], "names_file": null, "id": null, "_type": "ClassLabel"}, "article": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": {"features": null, "resources_checksums": {"train": {}, "test": {}, "validation": {}}}, "supervised_keys": {"input": ["article", "author"], "output": ""}, "builder_name": "guardian_authorship", "config_name": "cross_genre_4", "version": {"version_str": "16.0.0", "description": "The Original DS with the cross-genre scenario no.4", "datasets_version_to_prepare": null, "major": 16, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 406144, "num_examples": 63, "dataset_name": "guardian_authorship"}, "test": {"name": "test", "num_bytes": 1604188, "num_examples": 264, "dataset_name": "guardian_authorship"}, "validation": {"name": "validation", "num_bytes": 730378, "num_examples": 117, "dataset_name": "guardian_authorship"}}, "download_checksums": {"https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1": {"num_bytes": 3100749, "checksum": "8bb1130a697ee5943bcb6e24989aa477341a8ce1b9e057955cf010b27e8a9d06"}}, "download_size": 3100749, "post_processing_size": 0, "dataset_size": 2740710, "size_in_bytes": 5841459}}
|
dummy/cross_genre_1/13.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ed0eb8af98f57cb103cd8b951ab99072ab872837a7c8d7158d07a4b9c5476d
|
3 |
+
size 4532
|
dummy/cross_genre_2/14.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ed0eb8af98f57cb103cd8b951ab99072ab872837a7c8d7158d07a4b9c5476d
|
3 |
+
size 4532
|
dummy/cross_genre_3/15.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ed0eb8af98f57cb103cd8b951ab99072ab872837a7c8d7158d07a4b9c5476d
|
3 |
+
size 4532
|
dummy/cross_genre_4/16.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ed0eb8af98f57cb103cd8b951ab99072ab872837a7c8d7158d07a4b9c5476d
|
3 |
+
size 4532
|
dummy/cross_topic_1/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_10/10.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_11/11.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_12/12.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_2/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_3/3.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_4/4.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_5/5.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_6/6.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_7/7.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_8/8.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
dummy/cross_topic_9/9.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44c3eb993c6cf76b66f16255c5fe66ead6b6809f83dc9873e21d2451eb6a48
|
3 |
+
size 3744
|
guardian_authorship.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""This is an authorship attribution dataset based on the work of Stamatatos 2013. """
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@article{article,
|
26 |
+
author = {Stamatatos, Efstathios},
|
27 |
+
year = {2013},
|
28 |
+
month = {01},
|
29 |
+
pages = {421-439},
|
30 |
+
title = {On the robustness of authorship attribution based on character n-gram features},
|
31 |
+
volume = {21},
|
32 |
+
journal = {Journal of Law and Policy}
|
33 |
+
}
|
34 |
+
|
35 |
+
@inproceedings{stamatatos2017authorship,
|
36 |
+
title={Authorship attribution using text distortion},
|
37 |
+
author={Stamatatos, Efstathios},
|
38 |
+
booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},
|
39 |
+
volume={1}
|
40 |
+
pages={1138--1149},
|
41 |
+
year={2017}
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013.
|
47 |
+
1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).
|
48 |
+
2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).
|
49 |
+
|
50 |
+
3- The same-topic/genre scenario is created by grouping all the datasts as follows.
|
51 |
+
For ex., to use same_topic and split the data 60-40 use:
|
52 |
+
train_ds = load_dataset('guardian_authorship', name="cross_topic_<<#>>",
|
53 |
+
split='train[:60%]+validation[:60%]+test[:60%]')
|
54 |
+
tests_ds = load_dataset('guardian_authorship', name="cross_topic_<<#>>",
|
55 |
+
split='train[-40%:]+validation[-40%:]+test[-40%:]')
|
56 |
+
|
57 |
+
IMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced
|
58 |
+
|
59 |
+
* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples
|
60 |
+
"""
|
61 |
+
|
62 |
+
_URL = "https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1"
|
63 |
+
|
64 |
+
|
65 |
+
# Using a specific configuration class is optional, you can also use the base class if you don't need
|
66 |
+
# to add specific attributes.
|
67 |
+
# here we give an example for three sub-set of the dataset with difference sizes.
|
68 |
+
class GuardianAuthorshipConfig(datasets.BuilderConfig):
|
69 |
+
""" BuilderConfig for NewDataset"""
|
70 |
+
|
71 |
+
def __init__(self, train_folder, valid_folder, test_folder, **kwargs):
|
72 |
+
"""
|
73 |
+
Args:
|
74 |
+
Train_folder: Topic/genre used for training
|
75 |
+
valid_folder: ~ ~ for validation
|
76 |
+
test_folder: ~ ~ for testing
|
77 |
+
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(GuardianAuthorshipConfig, self).__init__(**kwargs)
|
81 |
+
self.train_folder = train_folder
|
82 |
+
self.valid_folder = valid_folder
|
83 |
+
self.test_folder = test_folder
|
84 |
+
|
85 |
+
|
86 |
+
class GuardianAuthorship(datasets.GeneratorBasedBuilder):
|
87 |
+
"""dataset for same- and cross-topic authorship attribution"""
|
88 |
+
|
89 |
+
config_counter = 0
|
90 |
+
BUILDER_CONFIG_CLASS = GuardianAuthorshipConfig
|
91 |
+
BUILDER_CONFIGS = [
|
92 |
+
# cross-topic
|
93 |
+
GuardianAuthorshipConfig(
|
94 |
+
name="cross_topic_{}".format(1),
|
95 |
+
version=datasets.Version(
|
96 |
+
"{}.0.0".format(1), description="The Original DS with the cross-topic scenario no.{}".format(1)
|
97 |
+
),
|
98 |
+
train_folder="Politics",
|
99 |
+
valid_folder="Society",
|
100 |
+
test_folder="UK,World",
|
101 |
+
),
|
102 |
+
GuardianAuthorshipConfig(
|
103 |
+
name="cross_topic_{}".format(2),
|
104 |
+
version=datasets.Version(
|
105 |
+
"{}.0.0".format(2), description="The Original DS with the cross-topic scenario no.{}".format(2)
|
106 |
+
),
|
107 |
+
train_folder="Politics",
|
108 |
+
valid_folder="UK",
|
109 |
+
test_folder="Society,World",
|
110 |
+
),
|
111 |
+
GuardianAuthorshipConfig(
|
112 |
+
name="cross_topic_{}".format(3),
|
113 |
+
version=datasets.Version(
|
114 |
+
"{}.0.0".format(3), description="The Original DS with the cross-topic scenario no.{}".format(3)
|
115 |
+
),
|
116 |
+
train_folder="Politics",
|
117 |
+
valid_folder="World",
|
118 |
+
test_folder="Society,UK",
|
119 |
+
),
|
120 |
+
GuardianAuthorshipConfig(
|
121 |
+
name="cross_topic_{}".format(4),
|
122 |
+
version=datasets.Version(
|
123 |
+
"{}.0.0".format(4), description="The Original DS with the cross-topic scenario no.{}".format(4)
|
124 |
+
),
|
125 |
+
train_folder="Society",
|
126 |
+
valid_folder="Politics",
|
127 |
+
test_folder="UK,World",
|
128 |
+
),
|
129 |
+
GuardianAuthorshipConfig(
|
130 |
+
name="cross_topic_{}".format(5),
|
131 |
+
version=datasets.Version(
|
132 |
+
"{}.0.0".format(5), description="The Original DS with the cross-topic scenario no.{}".format(5)
|
133 |
+
),
|
134 |
+
train_folder="Society",
|
135 |
+
valid_folder="UK",
|
136 |
+
test_folder="Politics,World",
|
137 |
+
),
|
138 |
+
GuardianAuthorshipConfig(
|
139 |
+
name="cross_topic_{}".format(6),
|
140 |
+
version=datasets.Version(
|
141 |
+
"{}.0.0".format(6), description="The Original DS with the cross-topic scenario no.{}".format(6)
|
142 |
+
),
|
143 |
+
train_folder="Society",
|
144 |
+
valid_folder="World",
|
145 |
+
test_folder="Politics,UK",
|
146 |
+
),
|
147 |
+
GuardianAuthorshipConfig(
|
148 |
+
name="cross_topic_{}".format(7),
|
149 |
+
version=datasets.Version(
|
150 |
+
"{}.0.0".format(7), description="The Original DS with the cross-topic scenario no.{}".format(7)
|
151 |
+
),
|
152 |
+
train_folder="UK",
|
153 |
+
valid_folder="Politics",
|
154 |
+
test_folder="Society,World",
|
155 |
+
),
|
156 |
+
GuardianAuthorshipConfig(
|
157 |
+
name="cross_topic_{}".format(8),
|
158 |
+
version=datasets.Version(
|
159 |
+
"{}.0.0".format(8), description="The Original DS with the cross-topic scenario no.{}".format(8)
|
160 |
+
),
|
161 |
+
train_folder="UK",
|
162 |
+
valid_folder="Society",
|
163 |
+
test_folder="Politics,World",
|
164 |
+
),
|
165 |
+
GuardianAuthorshipConfig(
|
166 |
+
name="cross_topic_{}".format(9),
|
167 |
+
version=datasets.Version(
|
168 |
+
"{}.0.0".format(9), description="The Original DS with the cross-topic scenario no.{}".format(9)
|
169 |
+
),
|
170 |
+
train_folder="UK",
|
171 |
+
valid_folder="World",
|
172 |
+
test_folder="Politics,Society",
|
173 |
+
),
|
174 |
+
GuardianAuthorshipConfig(
|
175 |
+
name="cross_topic_{}".format(10),
|
176 |
+
version=datasets.Version(
|
177 |
+
"{}.0.0".format(10), description="The Original DS with the cross-topic scenario no.{}".format(10)
|
178 |
+
),
|
179 |
+
train_folder="World",
|
180 |
+
valid_folder="Politics",
|
181 |
+
test_folder="Society,UK",
|
182 |
+
),
|
183 |
+
GuardianAuthorshipConfig(
|
184 |
+
name="cross_topic_{}".format(11),
|
185 |
+
version=datasets.Version(
|
186 |
+
"{}.0.0".format(11), description="The Original DS with the cross-topic scenario no.{}".format(11)
|
187 |
+
),
|
188 |
+
train_folder="World",
|
189 |
+
valid_folder="Society",
|
190 |
+
test_folder="Politics,UK",
|
191 |
+
),
|
192 |
+
GuardianAuthorshipConfig(
|
193 |
+
name="cross_topic_{}".format(12),
|
194 |
+
version=datasets.Version(
|
195 |
+
"{}.0.0".format(12), description="The Original DS with the cross-topic scenario no.{}".format(12)
|
196 |
+
),
|
197 |
+
train_folder="World",
|
198 |
+
valid_folder="UK",
|
199 |
+
test_folder="Politics,Society",
|
200 |
+
),
|
201 |
+
# # cross-genre
|
202 |
+
GuardianAuthorshipConfig(
|
203 |
+
name="cross_genre_{}".format(1),
|
204 |
+
version=datasets.Version(
|
205 |
+
"{}.0.0".format(13), description="The Original DS with the cross-genre scenario no.{}".format(1)
|
206 |
+
),
|
207 |
+
train_folder="Books",
|
208 |
+
valid_folder="Politics",
|
209 |
+
test_folder="Society,UK,World",
|
210 |
+
),
|
211 |
+
GuardianAuthorshipConfig(
|
212 |
+
name="cross_genre_{}".format(2),
|
213 |
+
version=datasets.Version(
|
214 |
+
"{}.0.0".format(14), description="The Original DS with the cross-genre scenario no.{}".format(2)
|
215 |
+
),
|
216 |
+
train_folder="Books",
|
217 |
+
valid_folder="Society",
|
218 |
+
test_folder="Politics,UK,World",
|
219 |
+
),
|
220 |
+
GuardianAuthorshipConfig(
|
221 |
+
name="cross_genre_{}".format(3),
|
222 |
+
version=datasets.Version(
|
223 |
+
"{}.0.0".format(15), description="The Original DS with the cross-genre scenario no.{}".format(3)
|
224 |
+
),
|
225 |
+
train_folder="Books",
|
226 |
+
valid_folder="UK",
|
227 |
+
test_folder="Politics,Society,World",
|
228 |
+
),
|
229 |
+
GuardianAuthorshipConfig(
|
230 |
+
name="cross_genre_{}".format(4),
|
231 |
+
version=datasets.Version(
|
232 |
+
"{}.0.0".format(16), description="The Original DS with the cross-genre scenario no.{}".format(4)
|
233 |
+
),
|
234 |
+
train_folder="Books",
|
235 |
+
valid_folder="World",
|
236 |
+
test_folder="Politics,Society,UK",
|
237 |
+
),
|
238 |
+
]
|
239 |
+
|
240 |
+
def _info(self):
|
241 |
+
# Specifies the datasets.DatasetInfo object
|
242 |
+
return datasets.DatasetInfo(
|
243 |
+
# This is the description that will appear on the datasets page.
|
244 |
+
description=_DESCRIPTION,
|
245 |
+
features=datasets.Features(
|
246 |
+
{
|
247 |
+
# These are the features of your dataset like images, labels ...
|
248 |
+
# There are 13 authors in this dataset
|
249 |
+
"author": datasets.features.ClassLabel(
|
250 |
+
names=[
|
251 |
+
"catherinebennett",
|
252 |
+
"georgemonbiot",
|
253 |
+
"hugoyoung",
|
254 |
+
"jonathanfreedland",
|
255 |
+
"martinkettle",
|
256 |
+
"maryriddell",
|
257 |
+
"nickcohen",
|
258 |
+
"peterpreston",
|
259 |
+
"pollytoynbee",
|
260 |
+
"royhattersley",
|
261 |
+
"simonhoggart",
|
262 |
+
"willhutton",
|
263 |
+
"zoewilliams",
|
264 |
+
]
|
265 |
+
),
|
266 |
+
# There are book reviews, and articles on the following four topics
|
267 |
+
"topic": datasets.features.ClassLabel(names=["Politics", "Society", "UK", "World", "Books"]),
|
268 |
+
"article": datasets.Value("string"),
|
269 |
+
}
|
270 |
+
),
|
271 |
+
# If there's a common (input, target) tuple from the features,
|
272 |
+
# specify them here. They'll be used if as_supervised=True in
|
273 |
+
# builder.as_dataset.
|
274 |
+
supervised_keys=[("article", "author")],
|
275 |
+
# Homepage of the dataset for documentation
|
276 |
+
homepage="http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf",
|
277 |
+
citation=_CITATION,
|
278 |
+
)
|
279 |
+
|
280 |
+
def _split_generators(self, dl_manager):
|
281 |
+
"""Returns SplitGenerators."""
|
282 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
283 |
+
# download and extract URLs
|
284 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
285 |
+
|
286 |
+
# This folder contains the orginal/2013 dataset
|
287 |
+
data_dir = os.path.join(dl_dir, "Guardian", "Guardian_original")
|
288 |
+
|
289 |
+
return [
|
290 |
+
datasets.SplitGenerator(
|
291 |
+
name=datasets.Split.TRAIN,
|
292 |
+
# These kwargs will be passed to _generate_examples
|
293 |
+
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.train_folder, "split": "train"},
|
294 |
+
),
|
295 |
+
datasets.SplitGenerator(
|
296 |
+
name=datasets.Split.TEST,
|
297 |
+
# These kwargs will be passed to _generate_examples
|
298 |
+
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.test_folder, "split": "test"},
|
299 |
+
),
|
300 |
+
datasets.SplitGenerator(
|
301 |
+
name=datasets.Split.VALIDATION,
|
302 |
+
# These kwargs will be passed to _generate_examples
|
303 |
+
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.valid_folder, "split": "valid"},
|
304 |
+
),
|
305 |
+
]
|
306 |
+
|
307 |
+
def _generate_examples(self, data_dir, samples_folders, split):
|
308 |
+
""" Yields examples. """
|
309 |
+
# Yields (key, example) tuples from the dataset
|
310 |
+
|
311 |
+
# Training and validation are on 1 topic/genre, while testing is on multiple topics
|
312 |
+
# We convert the sample folders into list (from string)
|
313 |
+
if samples_folders.count(",") == 0:
|
314 |
+
samples_folders = [samples_folders]
|
315 |
+
else:
|
316 |
+
samples_folders = samples_folders.split(",")
|
317 |
+
|
318 |
+
# the dataset is structured as:
|
319 |
+
# |-Topic1
|
320 |
+
# |---author 1
|
321 |
+
# |------- article-1
|
322 |
+
# |------- article-2
|
323 |
+
# |---author 2
|
324 |
+
# |------- article-1
|
325 |
+
# |------- article-2
|
326 |
+
# |-Topic2
|
327 |
+
# ...
|
328 |
+
|
329 |
+
for topic in samples_folders:
|
330 |
+
full_path = os.path.join(data_dir, topic)
|
331 |
+
|
332 |
+
for author in os.listdir(full_path):
|
333 |
+
|
334 |
+
list_articles = os.listdir(os.path.join(full_path, author))
|
335 |
+
if len(list_articles) == 0:
|
336 |
+
# Some authors have no articles on certain topics
|
337 |
+
continue
|
338 |
+
|
339 |
+
for id_, article in enumerate(list_articles):
|
340 |
+
path_2_author = os.path.join(full_path, author)
|
341 |
+
path_2_article = os.path.join(path_2_author, article)
|
342 |
+
|
343 |
+
with open(path_2_article, "r", encoding="utf8", errors="ignore") as f:
|
344 |
+
art = f.readlines()
|
345 |
+
|
346 |
+
# The whole article is stored as one line. We access the 1st element of the list
|
347 |
+
# to store it as string, not as a list
|
348 |
+
yield id_, {
|
349 |
+
"article": art[0],
|
350 |
+
"author": author,
|
351 |
+
"topic": topic,
|
352 |
+
}
|