import tensorflow as tf import datasets _DESCRIPTION = ( "This dataset consists 90k images of Chest-X-Ray from the Mimic-CXR dataset." "For each image, we have a consise report obtain from de PRO-CXR dataset" "All images have a size of 512x512 pixels." ) _BASE_URL = "https://drive.google.com/file/d/1u27GCgIIRqDz8a5-VTcMJ1pEFQbGv_QB/view?usp=sharing" FEATURE_DESCRIPTION_TFRECORD = { 'report': tf.io.FixedLenFeature([], tf.string), 'image': tf.io.FixedLenFeature([], tf.string), } class ReportsCXR(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description = _DESCRIPTION, features = datasets.Features({ 'image': datasets.Image(), 'report': datasets.Value(dtype='string') }) ) def _get_drive_url(self, url): base_url = 'https://drive.google.com/uc?id=' split_url = url.split('/') return base_url + split_url[5] def _split_generators(self, dl_manager): archive_path = dl_manager.download(self._get_drive_url(_BASE_URL)) return [ datasets.SplitGenerator(name='full', gen_kwargs={'filepath': dl_manager.iter_archive(archive_path)}) ] def _parse_image_function(example_proto): # Parse the input tf.train.Example proto using the dictionary above. return tf.io.parse_single_example(example_proto, FEATURE_DESCRIPTION_TFRECORD) def _generate_examples(self, filepath): raw_image_dataset = tf.data.TFRecordDataset(filepath) parsed_image_dataset = raw_image_dataset.map(self._parse_image_function) for image_features in parsed_image_dataset: image_raw = image_features['image'].numpy() yield {'image': image_raw, 'report': image_features['report']}