Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
lintang commited on
Commit
5e22f7a
·
1 Parent(s): 56930f5

Create coqa.py

Browse files
Files changed (1) hide show
  1. coqa.py +178 -0
coqa.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ CoQA: A Conversational Question Answering Challenge
3
+ https://arxiv.org/pdf/1808.07042.pdf
4
+
5
+ CoQA is a large-scale dataset for building Conversational Question Answering
6
+ systems. The goal of the CoQA challenge is to measure the ability of machines to
7
+ understand a text passage and answer a series of interconnected questions that
8
+ appear in a conversation.
9
+
10
+ Homepage: https://stanfordnlp.github.io/coqa/
11
+ """
12
+ import inspect
13
+ import transformers.data.metrics.squad_metrics as squad_metrics
14
+ import lm_eval.datasets.coqa.coqa
15
+ from lm_eval.base import Task, rf, mean
16
+ from itertools import zip_longest
17
+
18
+
19
+ _CITATION = """
20
+ @misc{reddy2018coqa,
21
+ title={CoQA: A Conversational Question Answering Challenge},
22
+ author={Siva Reddy and Danqi Chen and Christopher D. Manning},
23
+ year={2018},
24
+ eprint={1808.07042},
25
+ archivePrefix={arXiv},
26
+ primaryClass={cs.CL}
27
+ }
28
+ """
29
+
30
+
31
+ class CoQA(Task):
32
+ VERSION = 1
33
+ DATASET_PATH = inspect.getfile(lm_eval.datasets.coqa.coqa)
34
+ DATASET_NAME = None
35
+
36
+ def has_training_docs(self):
37
+ return True
38
+
39
+ def has_validation_docs(self):
40
+ return True
41
+
42
+ def has_test_docs(self):
43
+ return False
44
+
45
+ def training_docs(self):
46
+ return self.dataset["train"]
47
+
48
+ def validation_docs(self):
49
+ return self.dataset["validation"]
50
+
51
+ def test_docs(self):
52
+ pass
53
+
54
+ def doc_to_text(self, doc):
55
+ # Given a passage p, the conversation history {q1, a1, . . . qi−1, ai−1}
56
+ # and a question qi, the task is to predict the answer ai
57
+ doc_text = doc["story"] + "\n\n"
58
+ for (q, a) in zip_longest(
59
+ doc["questions"]["input_text"], doc["answers"]["input_text"][:-1]
60
+ ): # omit target answer ai
61
+ question = f"Q: {q}\n\n"
62
+ answer = f"A: {a}\n\n" if a is not None else "A:"
63
+ doc_text += question + answer
64
+ return doc_text
65
+
66
+ def should_decontaminate(self):
67
+ return True
68
+
69
+ def doc_to_decontamination_query(self, doc):
70
+ return doc["story"] + " " + "\n".join(doc["questions"]["input_text"])
71
+
72
+ @classmethod
73
+ def get_answers(cls, doc, turn_id):
74
+ # Returns unique answers and valid alternatives (Some questions in CoQA have multiple valid answers).
75
+ answers = []
76
+ answer_forturn = doc["answers"]["input_text"][turn_id - 1]
77
+ answers.append(answer_forturn)
78
+
79
+ additional_answers = doc.get("additional_answers")
80
+ if additional_answers:
81
+ for key in additional_answers:
82
+ additional_answer_for_turn = additional_answers[key]["input_text"][
83
+ turn_id - 1
84
+ ]
85
+ if additional_answer_for_turn.lower() not in map(str.lower, answers):
86
+ answers.append(additional_answer_for_turn)
87
+ return answers
88
+
89
+ @classmethod
90
+ def get_answer_choice(self, raw_text):
91
+ # Function maps answers to CoQA answer categories
92
+ # ~ 1/5 of the CoQA answers are Yes/No
93
+ # ~ 2/3 of the CoQA answers are span-based
94
+ # (answers overlap with the passage ignoring punctuation and case mismatch)
95
+ if raw_text == "unknown":
96
+ return "0"
97
+ if squad_metrics.normalize_answer(raw_text) == "yes":
98
+ return "1"
99
+ if squad_metrics.normalize_answer(raw_text) == "no":
100
+ return "2"
101
+ return "3" # Not a yes/no question
102
+
103
+ @staticmethod
104
+ def compute_scores(gold_list, pred):
105
+ # tests for exact match and on the normalised answer (compute_exact)
106
+ # test for overlap (compute_f1)
107
+ f1_sum = 0.0
108
+ em_sum = 0.0
109
+ if len(gold_list) > 1:
110
+ for i in range(len(gold_list)):
111
+ gold_answers = gold_list[0:i] + gold_list[i + 1 :]
112
+ # predictions compared against (n) golds and take maximum
113
+ em_sum += max(
114
+ squad_metrics.compute_exact(a, pred) for a in gold_answers
115
+ )
116
+ f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers)
117
+ else:
118
+ em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list)
119
+ f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list)
120
+
121
+ return {
122
+ "em": em_sum / max(1, len(gold_list)),
123
+ "f1": f1_sum / max(1, len(gold_list)),
124
+ }
125
+
126
+ def doc_to_target(self, doc, turnid=None):
127
+ # Default to prediction of last turn.
128
+ if turnid is None:
129
+ turnid = len(doc["questions"]["input_text"])
130
+ raw_text = doc["answers"]["input_text"][turnid - 1]
131
+ return " " + raw_text
132
+
133
+ def construct_requests(self, doc, ctx):
134
+ """Uses RequestFactory to construct Requests and returns an iterable of
135
+ Requests which will be sent to the LM.
136
+
137
+ :param doc:
138
+ The document as returned from training_docs, validation_docs, or test_docs.
139
+ :param ctx: str
140
+ The context string, generated by fewshot_context. This includes the natural
141
+ language description, as well as the few shot examples, and the question
142
+ part of the document for `doc`.
143
+ """
144
+ cont_request = rf.greedy_until(ctx, {"until": ["\nQ:"]})
145
+ return cont_request
146
+
147
+ def process_results(self, doc, results):
148
+ """Take a single document and the LM results and evaluates, returning a
149
+ dict where keys are the names of submetrics and values are the values of
150
+ the metric for that one document
151
+
152
+ :param doc:
153
+ The document as returned from training_docs, validation_docs, or test_docs.
154
+ :param results:
155
+ The results of the requests created in construct_requests.
156
+ """
157
+ turn_id = len(doc["questions"]["input_text"])
158
+ gold_list = self.get_answers(doc, turn_id)
159
+ pred = results[0].strip().split("\n")[0]
160
+
161
+ scores = self.compute_scores(gold_list, pred)
162
+
163
+ return {
164
+ "f1": scores["f1"],
165
+ "em": scores["em"],
166
+ }
167
+
168
+ def higher_is_better(self):
169
+ return {
170
+ "f1": True,
171
+ "em": True,
172
+ }
173
+
174
+ def aggregation(self):
175
+ return {
176
+ "f1": mean,
177
+ "em": mean,
178
+ }