File size: 10,310 Bytes
85ebc1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# Modified by Nora Belrose of EleutherAI (2023)
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""FEVER dataset."""
import json
import os
import textwrap
import datasets
class FeverConfig(datasets.BuilderConfig):
"""BuilderConfig for FEVER."""
def __init__(self, homepage: str = None, citation: str = None, base_url: str = None, urls: dict = None, **kwargs):
"""BuilderConfig for FEVER.
Args:
homepage (`str`): Homepage.
citation (`str`): Citation reference.
base_url (`str`): Data base URL that precedes all data URLs.
urls (`dict`): Data URLs (each URL will pe preceded by `base_url`).
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
self.homepage = homepage
self.citation = citation
self.base_url = base_url
self.urls = {key: f"{base_url}/{url}" for key, url in urls.items()}
class Fever(datasets.GeneratorBasedBuilder):
"""Fact Extraction and VERification Dataset."""
BUILDER_CONFIGS = [
FeverConfig(
name="v1.0",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
"FEVER v1.0\n"
"FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences "
"extracted from Wikipedia and subsequently verified without knowledge of the sentence they were "
"derived from. The claims are classified as Supported, Refuted or NotEnoughInfo. For the first two "
"classes, the annotators also recorded the sentence(s) forming the necessary evidence for their "
"judgment."
),
homepage="https://fever.ai/dataset/fever.html",
citation=textwrap.dedent(
"""\
@inproceedings{Thorne18Fever,
author = {Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Mittal, Arpit},
title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VERification}},
booktitle = {NAACL-HLT},
year = {2018}
}"""
),
base_url="https://fever.ai/download/fever",
urls={
datasets.Split.TRAIN: "train.jsonl",
"dev": "shared_task_dev.jsonl",
"paper_dev": "paper_dev.jsonl",
"paper_test": "paper_test.jsonl",
},
),
FeverConfig(
name="v2.0",
version=datasets.Version("2.0.0"),
description=textwrap.dedent(
"FEVER v2.0:\n"
"The FEVER 2.0 Dataset consists of 1174 claims created by the submissions of participants in the "
"Breaker phase of the 2019 shared task. Participants (Breakers) were tasked with generating "
"adversarial examples that induce classification errors for the existing systems. Breakers submitted "
"a dataset of up to 1000 instances with equal number of instances for each of the three classes "
"(Supported, Refuted NotEnoughInfo). Only novel claims (i.e. not contained in the original FEVER "
"dataset) were considered as valid entries to the shared task. The submissions were then manually "
"evaluated for Correctness (grammatical, appropriately labeled and meet the FEVER annotation "
"guidelines requirements)."
),
homepage="https://fever.ai/dataset/adversarial.html",
citation=textwrap.dedent(
"""\
@inproceedings{Thorne19FEVER2,
author = {Thorne, James and Vlachos, Andreas and Cocarascu, Oana and Christodoulopoulos, Christos and Mittal, Arpit},
title = {The {FEVER2.0} Shared Task},
booktitle = {Proceedings of the Second Workshop on {Fact Extraction and VERification (FEVER)}},
year = {2018}
}"""
),
base_url="https://fever.ai/download/fever2.0",
urls={
datasets.Split.VALIDATION: "fever2-fixers-dev.jsonl",
},
),
FeverConfig(
name="wiki_pages",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
"Wikipedia pages for FEVER v1.0:\n"
"FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences "
"extracted from Wikipedia and subsequently verified without knowledge of the sentence they were "
"derived from. The claims are classified as Supported, Refuted or NotEnoughInfo. For the first two "
"classes, the annotators also recorded the sentence(s) forming the necessary evidence for their "
"judgment."
),
homepage="https://fever.ai/dataset/fever.html",
citation=textwrap.dedent(
"""\
@inproceedings{Thorne18Fever,
author = {Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Mittal, Arpit},
title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VERification}},
booktitle = {NAACL-HLT},
year = {2018}
}"""
),
base_url="https://fever.ai/download/fever",
urls={
"wikipedia_pages": "wiki-pages.zip",
},
),
]
def _info(self):
if self.config.name == "wiki_pages":
features = {
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"lines": datasets.Value("string"),
}
elif self.config.name == "v1.0" or self.config.name == "v2.0":
features = {
"id": datasets.Value("int32"),
"label": datasets.ClassLabel(names=["REFUTES", "SUPPORTS"]),
"claim": datasets.Value("string"),
"evidence_annotation_id": datasets.Value("int32"),
"evidence_id": datasets.Value("int32"),
"evidence_wiki_url": datasets.Value("string"),
"evidence_sentence_id": datasets.Value("int32"),
}
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(features),
homepage=self.config.homepage,
citation=self.config.citation,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_paths = dl_manager.download_and_extract(self.config.urls)
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"filepath": dl_paths[split]
if self.config.name != "wiki_pages"
else dl_manager.iter_files(os.path.join(dl_paths[split], "wiki-pages")),
},
)
for split in dl_paths.keys()
]
def _generate_examples(self, filepath):
"""Yields examples."""
if self.config.name == "v1.0" or self.config.name == "v2.0":
with open(filepath, encoding="utf-8") as f:
for row_id, row in enumerate(f):
data = json.loads(row)
id_ = data["id"]
label = data.get("label", "")
# Drop the examples with label "NOT ENOUGH INFO"
if label not in ("REFUTES", "SUPPORTS"):
continue
claim = data["claim"]
evidences = data.get("evidence", [])
if len(evidences) > 0:
for i in range(len(evidences)):
for j in range(len(evidences[i])):
annot_id = evidences[i][j][0] if evidences[i][j][0] else -1
evidence_id = evidences[i][j][1] if evidences[i][j][1] else -1
wiki_url = evidences[i][j][2] if evidences[i][j][2] else ""
sent_id = evidences[i][j][3] if evidences[i][j][3] else -1
yield str(row_id) + "_" + str(i) + "_" + str(j), {
"id": id_,
"label": label,
"claim": claim,
"evidence_annotation_id": annot_id,
"evidence_id": evidence_id,
"evidence_wiki_url": wiki_url,
"evidence_sentence_id": sent_id,
}
else:
yield row_id, {
"id": id_,
"label": label,
"claim": claim,
"evidence_annotation_id": -1,
"evidence_id": -1,
"evidence_wiki_url": "",
"evidence_sentence_id": -1,
}
elif self.config.name == "wiki_pages":
for file_id, file in enumerate(filepath):
with open(file, encoding="utf-8") as f:
for row_id, row in enumerate(f):
data = json.loads(row)
yield f"{file_id}_{row_id}", data
|