Oskar Douwe van der Wal commited on
Commit
2ef66eb
·
1 Parent(s): 4e806d3

New results

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pythia-14m-seed1/step0/EleutherAI__pythia-14m-seed1/results_2024-07-05T13-24-18.246759.json.bak +2606 -0
  2. pythia-14m-seed1/step0/EleutherAI__pythia-14m-seed1/results_2024-07-11T13-45-02.042989.json.bak +2606 -0
  3. pythia-14m-seed1/step0/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-34-26.878314.json +482 -0
  4. pythia-14m-seed1/step1/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-38-36.798754.json +482 -0
  5. pythia-14m-seed1/step1000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-20-43.708459.json +482 -0
  6. pythia-14m-seed1/step10000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-58-13.399858.json +482 -0
  7. pythia-14m-seed1/step11000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-02-19.860338.json +482 -0
  8. pythia-14m-seed1/step12000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-06-26.034288.json +482 -0
  9. pythia-14m-seed1/step128/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-08-24.350787.json +482 -0
  10. pythia-14m-seed1/step13000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-10-32.725397.json +482 -0
  11. pythia-14m-seed1/step14000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-14-36.870500.json +482 -0
  12. pythia-14m-seed1/step15000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-18-44.185809.json +482 -0
  13. pythia-14m-seed1/step16/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-55-59.794548.json +482 -0
  14. pythia-14m-seed1/step16000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-22-52.656419.json +482 -0
  15. pythia-14m-seed1/step17000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-27-02.544847.json +482 -0
  16. pythia-14m-seed1/step18000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-31-07.685214.json +482 -0
  17. pythia-14m-seed1/step19000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-35-11.859545.json +482 -0
  18. pythia-14m-seed1/step2/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-42-57.791663.json +482 -0
  19. pythia-14m-seed1/step2000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-25-00.074484.json +482 -0
  20. pythia-14m-seed1/step20000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-39-21.895446.json +482 -0
  21. pythia-14m-seed1/step21000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-43-30.344693.json +482 -0
  22. pythia-14m-seed1/step22000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-47-38.819675.json +482 -0
  23. pythia-14m-seed1/step23000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-51-49.064750.json +482 -0
  24. pythia-14m-seed1/step24000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-55-57.280297.json +482 -0
  25. pythia-14m-seed1/step25000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-00-23.273296.json +482 -0
  26. pythia-14m-seed1/step256/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-12-30.518046.json +482 -0
  27. pythia-14m-seed1/step26000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-04-43.508436.json +482 -0
  28. pythia-14m-seed1/step27000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-08-54.479591.json +482 -0
  29. pythia-14m-seed1/step28000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-13-03.437554.json +482 -0
  30. pythia-14m-seed1/step29000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-17-10.235976.json +482 -0
  31. pythia-14m-seed1/step3000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-29-07.176670.json +482 -0
  32. pythia-14m-seed1/step30000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-21-21.161950.json +482 -0
  33. pythia-14m-seed1/step31000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-25-31.758593.json +482 -0
  34. pythia-14m-seed1/step32/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-00-10.088125.json +482 -0
  35. pythia-14m-seed1/step32000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-29-41.037818.json +482 -0
  36. pythia-14m-seed1/step33000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-33-49.879234.json +482 -0
  37. pythia-14m-seed1/step34000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-38-10.348821.json +482 -0
  38. pythia-14m-seed1/step35000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-42-22.390553.json +482 -0
  39. pythia-14m-seed1/step36000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-46-35.988527.json +482 -0
  40. pythia-14m-seed1/step37000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-50-44.879723.json +482 -0
  41. pythia-14m-seed1/step38000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-54-53.146841.json +482 -0
  42. pythia-14m-seed1/step39000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-59-06.449694.json +482 -0
  43. pythia-14m-seed1/step4/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-47-23.908503.json +482 -0
  44. pythia-14m-seed1/step4000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-33-15.998610.json +482 -0
  45. pythia-14m-seed1/step40000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-03-22.077168.json +482 -0
  46. pythia-14m-seed1/step41000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-07-29.805237.json +482 -0
  47. pythia-14m-seed1/step42000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-11-40.178060.json +482 -0
  48. pythia-14m-seed1/step43000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-15-48.237659.json +482 -0
  49. pythia-14m-seed1/step44000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-20-11.460936.json +482 -0
  50. pythia-14m-seed1/step45000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-24-41.702741.json +482 -0
pythia-14m-seed1/step0/EleutherAI__pythia-14m-seed1/results_2024-07-05T13-24-18.246759.json.bak ADDED
@@ -0,0 +1,2606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "blimp": {
4
+ "acc,none": 0.5175074626865671,
5
+ "acc_stderr,none": 0.001882002716920592,
6
+ "alias": "blimp"
7
+ },
8
+ "blimp_adjunct_island": {
9
+ "acc,none": 0.56,
10
+ "acc_stderr,none": 0.015704987954361718,
11
+ "alias": " - blimp_adjunct_island"
12
+ },
13
+ "blimp_anaphor_gender_agreement": {
14
+ "acc,none": 0.558,
15
+ "acc_stderr,none": 0.01571250721186415,
16
+ "alias": " - blimp_anaphor_gender_agreement"
17
+ },
18
+ "blimp_anaphor_number_agreement": {
19
+ "acc,none": 0.539,
20
+ "acc_stderr,none": 0.015771104201283047,
21
+ "alias": " - blimp_anaphor_number_agreement"
22
+ },
23
+ "blimp_animate_subject_passive": {
24
+ "acc,none": 0.593,
25
+ "acc_stderr,none": 0.015543249100255474,
26
+ "alias": " - blimp_animate_subject_passive"
27
+ },
28
+ "blimp_animate_subject_trans": {
29
+ "acc,none": 0.813,
30
+ "acc_stderr,none": 0.012336254828074168,
31
+ "alias": " - blimp_animate_subject_trans"
32
+ },
33
+ "blimp_causative": {
34
+ "acc,none": 0.457,
35
+ "acc_stderr,none": 0.0157606915901365,
36
+ "alias": " - blimp_causative"
37
+ },
38
+ "blimp_complex_NP_island": {
39
+ "acc,none": 0.509,
40
+ "acc_stderr,none": 0.0158167369950053,
41
+ "alias": " - blimp_complex_NP_island"
42
+ },
43
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
44
+ "acc,none": 0.545,
45
+ "acc_stderr,none": 0.015755101498347232,
46
+ "alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
47
+ },
48
+ "blimp_coordinate_structure_constraint_object_extraction": {
49
+ "acc,none": 0.531,
50
+ "acc_stderr,none": 0.015788865959538965,
51
+ "alias": " - blimp_coordinate_structure_constraint_object_extraction"
52
+ },
53
+ "blimp_determiner_noun_agreement_1": {
54
+ "acc,none": 0.538,
55
+ "acc_stderr,none": 0.015773547629015002,
56
+ "alias": " - blimp_determiner_noun_agreement_1"
57
+ },
58
+ "blimp_determiner_noun_agreement_2": {
59
+ "acc,none": 0.53,
60
+ "acc_stderr,none": 0.015790799515836725,
61
+ "alias": " - blimp_determiner_noun_agreement_2"
62
+ },
63
+ "blimp_determiner_noun_agreement_irregular_1": {
64
+ "acc,none": 0.498,
65
+ "acc_stderr,none": 0.01581917337430266,
66
+ "alias": " - blimp_determiner_noun_agreement_irregular_1"
67
+ },
68
+ "blimp_determiner_noun_agreement_irregular_2": {
69
+ "acc,none": 0.471,
70
+ "acc_stderr,none": 0.015792669451628764,
71
+ "alias": " - blimp_determiner_noun_agreement_irregular_2"
72
+ },
73
+ "blimp_determiner_noun_agreement_with_adj_2": {
74
+ "acc,none": 0.538,
75
+ "acc_stderr,none": 0.015773547629015002,
76
+ "alias": " - blimp_determiner_noun_agreement_with_adj_2"
77
+ },
78
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
79
+ "acc,none": 0.54,
80
+ "acc_stderr,none": 0.0157685969143944,
81
+ "alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
82
+ },
83
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
84
+ "acc,none": 0.525,
85
+ "acc_stderr,none": 0.015799513429996023,
86
+ "alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
87
+ },
88
+ "blimp_determiner_noun_agreement_with_adjective_1": {
89
+ "acc,none": 0.499,
90
+ "acc_stderr,none": 0.015819268290576817,
91
+ "alias": " - blimp_determiner_noun_agreement_with_adjective_1"
92
+ },
93
+ "blimp_distractor_agreement_relational_noun": {
94
+ "acc,none": 0.477,
95
+ "acc_stderr,none": 0.015802554246726087,
96
+ "alias": " - blimp_distractor_agreement_relational_noun"
97
+ },
98
+ "blimp_distractor_agreement_relative_clause": {
99
+ "acc,none": 0.511,
100
+ "acc_stderr,none": 0.01581547119529257,
101
+ "alias": " - blimp_distractor_agreement_relative_clause"
102
+ },
103
+ "blimp_drop_argument": {
104
+ "acc,none": 0.663,
105
+ "acc_stderr,none": 0.01495508791865346,
106
+ "alias": " - blimp_drop_argument"
107
+ },
108
+ "blimp_ellipsis_n_bar_1": {
109
+ "acc,none": 0.431,
110
+ "acc_stderr,none": 0.01566794448817344,
111
+ "alias": " - blimp_ellipsis_n_bar_1"
112
+ },
113
+ "blimp_ellipsis_n_bar_2": {
114
+ "acc,none": 0.327,
115
+ "acc_stderr,none": 0.014842213153411162,
116
+ "alias": " - blimp_ellipsis_n_bar_2"
117
+ },
118
+ "blimp_existential_there_object_raising": {
119
+ "acc,none": 0.69,
120
+ "acc_stderr,none": 0.014632638658632766,
121
+ "alias": " - blimp_existential_there_object_raising"
122
+ },
123
+ "blimp_existential_there_quantifiers_1": {
124
+ "acc,none": 0.483,
125
+ "acc_stderr,none": 0.015810153729833274,
126
+ "alias": " - blimp_existential_there_quantifiers_1"
127
+ },
128
+ "blimp_existential_there_quantifiers_2": {
129
+ "acc,none": 0.833,
130
+ "acc_stderr,none": 0.011800434324644593,
131
+ "alias": " - blimp_existential_there_quantifiers_2"
132
+ },
133
+ "blimp_existential_there_subject_raising": {
134
+ "acc,none": 0.576,
135
+ "acc_stderr,none": 0.015635487471405186,
136
+ "alias": " - blimp_existential_there_subject_raising"
137
+ },
138
+ "blimp_expletive_it_object_raising": {
139
+ "acc,none": 0.589,
140
+ "acc_stderr,none": 0.01556667341859915,
141
+ "alias": " - blimp_expletive_it_object_raising"
142
+ },
143
+ "blimp_inchoative": {
144
+ "acc,none": 0.421,
145
+ "acc_stderr,none": 0.015620595475301285,
146
+ "alias": " - blimp_inchoative"
147
+ },
148
+ "blimp_intransitive": {
149
+ "acc,none": 0.554,
150
+ "acc_stderr,none": 0.01572677116675039,
151
+ "alias": " - blimp_intransitive"
152
+ },
153
+ "blimp_irregular_past_participle_adjectives": {
154
+ "acc,none": 0.533,
155
+ "acc_stderr,none": 0.015784807891138876,
156
+ "alias": " - blimp_irregular_past_participle_adjectives"
157
+ },
158
+ "blimp_irregular_past_participle_verbs": {
159
+ "acc,none": 0.391,
160
+ "acc_stderr,none": 0.015438826294681775,
161
+ "alias": " - blimp_irregular_past_participle_verbs"
162
+ },
163
+ "blimp_irregular_plural_subject_verb_agreement_1": {
164
+ "acc,none": 0.528,
165
+ "acc_stderr,none": 0.015794475789511517,
166
+ "alias": " - blimp_irregular_plural_subject_verb_agreement_1"
167
+ },
168
+ "blimp_irregular_plural_subject_verb_agreement_2": {
169
+ "acc,none": 0.536,
170
+ "acc_stderr,none": 0.015778243024904673,
171
+ "alias": " - blimp_irregular_plural_subject_verb_agreement_2"
172
+ },
173
+ "blimp_left_branch_island_echo_question": {
174
+ "acc,none": 0.61,
175
+ "acc_stderr,none": 0.01543172505386673,
176
+ "alias": " - blimp_left_branch_island_echo_question"
177
+ },
178
+ "blimp_left_branch_island_simple_question": {
179
+ "acc,none": 0.516,
180
+ "acc_stderr,none": 0.015811198373114985,
181
+ "alias": " - blimp_left_branch_island_simple_question"
182
+ },
183
+ "blimp_matrix_question_npi_licensor_present": {
184
+ "acc,none": 0.596,
185
+ "acc_stderr,none": 0.015524980677122437,
186
+ "alias": " - blimp_matrix_question_npi_licensor_present"
187
+ },
188
+ "blimp_npi_present_1": {
189
+ "acc,none": 0.566,
190
+ "acc_stderr,none": 0.01568087656637504,
191
+ "alias": " - blimp_npi_present_1"
192
+ },
193
+ "blimp_npi_present_2": {
194
+ "acc,none": 0.586,
195
+ "acc_stderr,none": 0.01558354410417755,
196
+ "alias": " - blimp_npi_present_2"
197
+ },
198
+ "blimp_only_npi_licensor_present": {
199
+ "acc,none": 0.209,
200
+ "acc_stderr,none": 0.012864077288499339,
201
+ "alias": " - blimp_only_npi_licensor_present"
202
+ },
203
+ "blimp_only_npi_scope": {
204
+ "acc,none": 0.603,
205
+ "acc_stderr,none": 0.015480007449307982,
206
+ "alias": " - blimp_only_npi_scope"
207
+ },
208
+ "blimp_passive_1": {
209
+ "acc,none": 0.637,
210
+ "acc_stderr,none": 0.01521389044467136,
211
+ "alias": " - blimp_passive_1"
212
+ },
213
+ "blimp_passive_2": {
214
+ "acc,none": 0.652,
215
+ "acc_stderr,none": 0.015070604603768328,
216
+ "alias": " - blimp_passive_2"
217
+ },
218
+ "blimp_principle_A_c_command": {
219
+ "acc,none": 0.629,
220
+ "acc_stderr,none": 0.015283736211823096,
221
+ "alias": " - blimp_principle_A_c_command"
222
+ },
223
+ "blimp_principle_A_case_1": {
224
+ "acc,none": 0.31,
225
+ "acc_stderr,none": 0.014632638658632765,
226
+ "alias": " - blimp_principle_A_case_1"
227
+ },
228
+ "blimp_principle_A_case_2": {
229
+ "acc,none": 0.508,
230
+ "acc_stderr,none": 0.015817274929209084,
231
+ "alias": " - blimp_principle_A_case_2"
232
+ },
233
+ "blimp_principle_A_domain_1": {
234
+ "acc,none": 0.605,
235
+ "acc_stderr,none": 0.015466551464829328,
236
+ "alias": " - blimp_principle_A_domain_1"
237
+ },
238
+ "blimp_principle_A_domain_2": {
239
+ "acc,none": 0.517,
240
+ "acc_stderr,none": 0.015810153729833274,
241
+ "alias": " - blimp_principle_A_domain_2"
242
+ },
243
+ "blimp_principle_A_domain_3": {
244
+ "acc,none": 0.505,
245
+ "acc_stderr,none": 0.015818508944436743,
246
+ "alias": " - blimp_principle_A_domain_3"
247
+ },
248
+ "blimp_principle_A_reconstruction": {
249
+ "acc,none": 0.493,
250
+ "acc_stderr,none": 0.01581774956184353,
251
+ "alias": " - blimp_principle_A_reconstruction"
252
+ },
253
+ "blimp_regular_plural_subject_verb_agreement_1": {
254
+ "acc,none": 0.442,
255
+ "acc_stderr,none": 0.015712507211864152,
256
+ "alias": " - blimp_regular_plural_subject_verb_agreement_1"
257
+ },
258
+ "blimp_regular_plural_subject_verb_agreement_2": {
259
+ "acc,none": 0.513,
260
+ "acc_stderr,none": 0.015813952101896636,
261
+ "alias": " - blimp_regular_plural_subject_verb_agreement_2"
262
+ },
263
+ "blimp_sentential_negation_npi_licensor_present": {
264
+ "acc,none": 0.655,
265
+ "acc_stderr,none": 0.015039986742055365,
266
+ "alias": " - blimp_sentential_negation_npi_licensor_present"
267
+ },
268
+ "blimp_sentential_negation_npi_scope": {
269
+ "acc,none": 0.398,
270
+ "acc_stderr,none": 0.015486634102859016,
271
+ "alias": " - blimp_sentential_negation_npi_scope"
272
+ },
273
+ "blimp_sentential_subject_island": {
274
+ "acc,none": 0.51,
275
+ "acc_stderr,none": 0.015816135752773183,
276
+ "alias": " - blimp_sentential_subject_island"
277
+ },
278
+ "blimp_superlative_quantifiers_1": {
279
+ "acc,none": 0.348,
280
+ "acc_stderr,none": 0.015070604603768328,
281
+ "alias": " - blimp_superlative_quantifiers_1"
282
+ },
283
+ "blimp_superlative_quantifiers_2": {
284
+ "acc,none": 0.371,
285
+ "acc_stderr,none": 0.015283736211823096,
286
+ "alias": " - blimp_superlative_quantifiers_2"
287
+ },
288
+ "blimp_tough_vs_raising_1": {
289
+ "acc,none": 0.446,
290
+ "acc_stderr,none": 0.01572677116675039,
291
+ "alias": " - blimp_tough_vs_raising_1"
292
+ },
293
+ "blimp_tough_vs_raising_2": {
294
+ "acc,none": 0.566,
295
+ "acc_stderr,none": 0.01568087656637504,
296
+ "alias": " - blimp_tough_vs_raising_2"
297
+ },
298
+ "blimp_transitive": {
299
+ "acc,none": 0.515,
300
+ "acc_stderr,none": 0.01581217964181488,
301
+ "alias": " - blimp_transitive"
302
+ },
303
+ "blimp_wh_island": {
304
+ "acc,none": 0.432,
305
+ "acc_stderr,none": 0.015672320237336324,
306
+ "alias": " - blimp_wh_island"
307
+ },
308
+ "blimp_wh_questions_object_gap": {
309
+ "acc,none": 0.364,
310
+ "acc_stderr,none": 0.015222868840522005,
311
+ "alias": " - blimp_wh_questions_object_gap"
312
+ },
313
+ "blimp_wh_questions_subject_gap": {
314
+ "acc,none": 0.373,
315
+ "acc_stderr,none": 0.015300493622922927,
316
+ "alias": " - blimp_wh_questions_subject_gap"
317
+ },
318
+ "blimp_wh_questions_subject_gap_long_distance": {
319
+ "acc,none": 0.391,
320
+ "acc_stderr,none": 0.015438826294681775,
321
+ "alias": " - blimp_wh_questions_subject_gap_long_distance"
322
+ },
323
+ "blimp_wh_vs_that_no_gap": {
324
+ "acc,none": 0.317,
325
+ "acc_stderr,none": 0.014721675438880174,
326
+ "alias": " - blimp_wh_vs_that_no_gap"
327
+ },
328
+ "blimp_wh_vs_that_no_gap_long_distance": {
329
+ "acc,none": 0.346,
330
+ "acc_stderr,none": 0.01505026612756434,
331
+ "alias": " - blimp_wh_vs_that_no_gap_long_distance"
332
+ },
333
+ "blimp_wh_vs_that_with_gap": {
334
+ "acc,none": 0.687,
335
+ "acc_stderr,none": 0.014671272822977775,
336
+ "alias": " - blimp_wh_vs_that_with_gap"
337
+ },
338
+ "blimp_wh_vs_that_with_gap_long_distance": {
339
+ "acc,none": 0.67,
340
+ "acc_stderr,none": 0.014876872027456623,
341
+ "alias": " - blimp_wh_vs_that_with_gap_long_distance"
342
+ }
343
+ },
344
+ "groups": {
345
+ "blimp": {
346
+ "acc,none": 0.5175074626865671,
347
+ "acc_stderr,none": 0.001882002716920592,
348
+ "alias": "blimp"
349
+ }
350
+ },
351
+ "group_subtasks": {
352
+ "blimp": [
353
+ "blimp_causative",
354
+ "blimp_determiner_noun_agreement_irregular_2",
355
+ "blimp_passive_1",
356
+ "blimp_wh_questions_subject_gap",
357
+ "blimp_irregular_plural_subject_verb_agreement_1",
358
+ "blimp_wh_vs_that_no_gap",
359
+ "blimp_complex_NP_island",
360
+ "blimp_principle_A_reconstruction",
361
+ "blimp_anaphor_number_agreement",
362
+ "blimp_principle_A_domain_3",
363
+ "blimp_anaphor_gender_agreement",
364
+ "blimp_irregular_past_participle_adjectives",
365
+ "blimp_regular_plural_subject_verb_agreement_1",
366
+ "blimp_sentential_subject_island",
367
+ "blimp_left_branch_island_simple_question",
368
+ "blimp_distractor_agreement_relative_clause",
369
+ "blimp_irregular_plural_subject_verb_agreement_2",
370
+ "blimp_left_branch_island_echo_question",
371
+ "blimp_wh_vs_that_no_gap_long_distance",
372
+ "blimp_ellipsis_n_bar_1",
373
+ "blimp_determiner_noun_agreement_1",
374
+ "blimp_superlative_quantifiers_2",
375
+ "blimp_ellipsis_n_bar_2",
376
+ "blimp_adjunct_island",
377
+ "blimp_expletive_it_object_raising",
378
+ "blimp_principle_A_c_command",
379
+ "blimp_principle_A_domain_1",
380
+ "blimp_superlative_quantifiers_1",
381
+ "blimp_only_npi_scope",
382
+ "blimp_tough_vs_raising_1",
383
+ "blimp_transitive",
384
+ "blimp_intransitive",
385
+ "blimp_wh_questions_object_gap",
386
+ "blimp_only_npi_licensor_present",
387
+ "blimp_wh_vs_that_with_gap",
388
+ "blimp_existential_there_quantifiers_1",
389
+ "blimp_coordinate_structure_constraint_complex_left_branch",
390
+ "blimp_principle_A_domain_2",
391
+ "blimp_determiner_noun_agreement_with_adj_2",
392
+ "blimp_wh_island",
393
+ "blimp_existential_there_quantifiers_2",
394
+ "blimp_existential_there_object_raising",
395
+ "blimp_determiner_noun_agreement_with_adj_irregular_1",
396
+ "blimp_npi_present_2",
397
+ "blimp_animate_subject_passive",
398
+ "blimp_wh_questions_subject_gap_long_distance",
399
+ "blimp_existential_there_subject_raising",
400
+ "blimp_principle_A_case_2",
401
+ "blimp_principle_A_case_1",
402
+ "blimp_wh_vs_that_with_gap_long_distance",
403
+ "blimp_determiner_noun_agreement_irregular_1",
404
+ "blimp_drop_argument",
405
+ "blimp_sentential_negation_npi_scope",
406
+ "blimp_coordinate_structure_constraint_object_extraction",
407
+ "blimp_determiner_noun_agreement_2",
408
+ "blimp_irregular_past_participle_verbs",
409
+ "blimp_tough_vs_raising_2",
410
+ "blimp_sentential_negation_npi_licensor_present",
411
+ "blimp_distractor_agreement_relational_noun",
412
+ "blimp_passive_2",
413
+ "blimp_determiner_noun_agreement_with_adjective_1",
414
+ "blimp_inchoative",
415
+ "blimp_animate_subject_trans",
416
+ "blimp_regular_plural_subject_verb_agreement_2",
417
+ "blimp_npi_present_1",
418
+ "blimp_determiner_noun_agreement_with_adj_irregular_2",
419
+ "blimp_matrix_question_npi_licensor_present"
420
+ ]
421
+ },
422
+ "configs": {
423
+ "blimp_adjunct_island": {
424
+ "task": "blimp_adjunct_island",
425
+ "group": "blimp",
426
+ "dataset_path": "blimp",
427
+ "dataset_name": "adjunct_island",
428
+ "validation_split": "train",
429
+ "doc_to_text": "",
430
+ "doc_to_target": 0,
431
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
432
+ "description": "",
433
+ "target_delimiter": " ",
434
+ "fewshot_delimiter": "\n\n",
435
+ "num_fewshot": 0,
436
+ "metric_list": [
437
+ {
438
+ "metric": "acc"
439
+ }
440
+ ],
441
+ "output_type": "multiple_choice",
442
+ "repeats": 1,
443
+ "should_decontaminate": true,
444
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
445
+ "metadata": {
446
+ "version": 1.0
447
+ }
448
+ },
449
+ "blimp_anaphor_gender_agreement": {
450
+ "task": "blimp_anaphor_gender_agreement",
451
+ "group": "blimp",
452
+ "dataset_path": "blimp",
453
+ "dataset_name": "anaphor_gender_agreement",
454
+ "validation_split": "train",
455
+ "doc_to_text": "",
456
+ "doc_to_target": 0,
457
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
458
+ "description": "",
459
+ "target_delimiter": " ",
460
+ "fewshot_delimiter": "\n\n",
461
+ "num_fewshot": 0,
462
+ "metric_list": [
463
+ {
464
+ "metric": "acc"
465
+ }
466
+ ],
467
+ "output_type": "multiple_choice",
468
+ "repeats": 1,
469
+ "should_decontaminate": true,
470
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
471
+ "metadata": {
472
+ "version": 1.0
473
+ }
474
+ },
475
+ "blimp_anaphor_number_agreement": {
476
+ "task": "blimp_anaphor_number_agreement",
477
+ "group": "blimp",
478
+ "dataset_path": "blimp",
479
+ "dataset_name": "anaphor_number_agreement",
480
+ "validation_split": "train",
481
+ "doc_to_text": "",
482
+ "doc_to_target": 0,
483
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
484
+ "description": "",
485
+ "target_delimiter": " ",
486
+ "fewshot_delimiter": "\n\n",
487
+ "num_fewshot": 0,
488
+ "metric_list": [
489
+ {
490
+ "metric": "acc"
491
+ }
492
+ ],
493
+ "output_type": "multiple_choice",
494
+ "repeats": 1,
495
+ "should_decontaminate": true,
496
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
497
+ "metadata": {
498
+ "version": 1.0
499
+ }
500
+ },
501
+ "blimp_animate_subject_passive": {
502
+ "task": "blimp_animate_subject_passive",
503
+ "group": "blimp",
504
+ "dataset_path": "blimp",
505
+ "dataset_name": "animate_subject_passive",
506
+ "validation_split": "train",
507
+ "doc_to_text": "",
508
+ "doc_to_target": 0,
509
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
510
+ "description": "",
511
+ "target_delimiter": " ",
512
+ "fewshot_delimiter": "\n\n",
513
+ "num_fewshot": 0,
514
+ "metric_list": [
515
+ {
516
+ "metric": "acc"
517
+ }
518
+ ],
519
+ "output_type": "multiple_choice",
520
+ "repeats": 1,
521
+ "should_decontaminate": true,
522
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
523
+ "metadata": {
524
+ "version": 1.0
525
+ }
526
+ },
527
+ "blimp_animate_subject_trans": {
528
+ "task": "blimp_animate_subject_trans",
529
+ "group": "blimp",
530
+ "dataset_path": "blimp",
531
+ "dataset_name": "animate_subject_trans",
532
+ "validation_split": "train",
533
+ "doc_to_text": "",
534
+ "doc_to_target": 0,
535
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
536
+ "description": "",
537
+ "target_delimiter": " ",
538
+ "fewshot_delimiter": "\n\n",
539
+ "num_fewshot": 0,
540
+ "metric_list": [
541
+ {
542
+ "metric": "acc"
543
+ }
544
+ ],
545
+ "output_type": "multiple_choice",
546
+ "repeats": 1,
547
+ "should_decontaminate": true,
548
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
549
+ "metadata": {
550
+ "version": 1.0
551
+ }
552
+ },
553
+ "blimp_causative": {
554
+ "task": "blimp_causative",
555
+ "group": "blimp",
556
+ "dataset_path": "blimp",
557
+ "dataset_name": "causative",
558
+ "validation_split": "train",
559
+ "doc_to_text": "",
560
+ "doc_to_target": 0,
561
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
562
+ "description": "",
563
+ "target_delimiter": " ",
564
+ "fewshot_delimiter": "\n\n",
565
+ "num_fewshot": 0,
566
+ "metric_list": [
567
+ {
568
+ "metric": "acc"
569
+ }
570
+ ],
571
+ "output_type": "multiple_choice",
572
+ "repeats": 1,
573
+ "should_decontaminate": true,
574
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
575
+ "metadata": {
576
+ "version": 1.0
577
+ }
578
+ },
579
+ "blimp_complex_NP_island": {
580
+ "task": "blimp_complex_NP_island",
581
+ "group": "blimp",
582
+ "dataset_path": "blimp",
583
+ "dataset_name": "complex_NP_island",
584
+ "validation_split": "train",
585
+ "doc_to_text": "",
586
+ "doc_to_target": 0,
587
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
588
+ "description": "",
589
+ "target_delimiter": " ",
590
+ "fewshot_delimiter": "\n\n",
591
+ "num_fewshot": 0,
592
+ "metric_list": [
593
+ {
594
+ "metric": "acc"
595
+ }
596
+ ],
597
+ "output_type": "multiple_choice",
598
+ "repeats": 1,
599
+ "should_decontaminate": true,
600
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
601
+ "metadata": {
602
+ "version": 1.0
603
+ }
604
+ },
605
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
606
+ "task": "blimp_coordinate_structure_constraint_complex_left_branch",
607
+ "group": "blimp",
608
+ "dataset_path": "blimp",
609
+ "dataset_name": "coordinate_structure_constraint_complex_left_branch",
610
+ "validation_split": "train",
611
+ "doc_to_text": "",
612
+ "doc_to_target": 0,
613
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
614
+ "description": "",
615
+ "target_delimiter": " ",
616
+ "fewshot_delimiter": "\n\n",
617
+ "num_fewshot": 0,
618
+ "metric_list": [
619
+ {
620
+ "metric": "acc"
621
+ }
622
+ ],
623
+ "output_type": "multiple_choice",
624
+ "repeats": 1,
625
+ "should_decontaminate": true,
626
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
627
+ "metadata": {
628
+ "version": 1.0
629
+ }
630
+ },
631
+ "blimp_coordinate_structure_constraint_object_extraction": {
632
+ "task": "blimp_coordinate_structure_constraint_object_extraction",
633
+ "group": "blimp",
634
+ "dataset_path": "blimp",
635
+ "dataset_name": "coordinate_structure_constraint_object_extraction",
636
+ "validation_split": "train",
637
+ "doc_to_text": "",
638
+ "doc_to_target": 0,
639
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
640
+ "description": "",
641
+ "target_delimiter": " ",
642
+ "fewshot_delimiter": "\n\n",
643
+ "num_fewshot": 0,
644
+ "metric_list": [
645
+ {
646
+ "metric": "acc"
647
+ }
648
+ ],
649
+ "output_type": "multiple_choice",
650
+ "repeats": 1,
651
+ "should_decontaminate": true,
652
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
653
+ "metadata": {
654
+ "version": 1.0
655
+ }
656
+ },
657
+ "blimp_determiner_noun_agreement_1": {
658
+ "task": "blimp_determiner_noun_agreement_1",
659
+ "group": "blimp",
660
+ "dataset_path": "blimp",
661
+ "dataset_name": "determiner_noun_agreement_1",
662
+ "validation_split": "train",
663
+ "doc_to_text": "",
664
+ "doc_to_target": 0,
665
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
666
+ "description": "",
667
+ "target_delimiter": " ",
668
+ "fewshot_delimiter": "\n\n",
669
+ "num_fewshot": 0,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc"
673
+ }
674
+ ],
675
+ "output_type": "multiple_choice",
676
+ "repeats": 1,
677
+ "should_decontaminate": true,
678
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
679
+ "metadata": {
680
+ "version": 1.0
681
+ }
682
+ },
683
+ "blimp_determiner_noun_agreement_2": {
684
+ "task": "blimp_determiner_noun_agreement_2",
685
+ "group": "blimp",
686
+ "dataset_path": "blimp",
687
+ "dataset_name": "determiner_noun_agreement_2",
688
+ "validation_split": "train",
689
+ "doc_to_text": "",
690
+ "doc_to_target": 0,
691
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
692
+ "description": "",
693
+ "target_delimiter": " ",
694
+ "fewshot_delimiter": "\n\n",
695
+ "num_fewshot": 0,
696
+ "metric_list": [
697
+ {
698
+ "metric": "acc"
699
+ }
700
+ ],
701
+ "output_type": "multiple_choice",
702
+ "repeats": 1,
703
+ "should_decontaminate": true,
704
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
705
+ "metadata": {
706
+ "version": 1.0
707
+ }
708
+ },
709
+ "blimp_determiner_noun_agreement_irregular_1": {
710
+ "task": "blimp_determiner_noun_agreement_irregular_1",
711
+ "group": "blimp",
712
+ "dataset_path": "blimp",
713
+ "dataset_name": "determiner_noun_agreement_irregular_1",
714
+ "validation_split": "train",
715
+ "doc_to_text": "",
716
+ "doc_to_target": 0,
717
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
718
+ "description": "",
719
+ "target_delimiter": " ",
720
+ "fewshot_delimiter": "\n\n",
721
+ "num_fewshot": 0,
722
+ "metric_list": [
723
+ {
724
+ "metric": "acc"
725
+ }
726
+ ],
727
+ "output_type": "multiple_choice",
728
+ "repeats": 1,
729
+ "should_decontaminate": true,
730
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
731
+ "metadata": {
732
+ "version": 1.0
733
+ }
734
+ },
735
+ "blimp_determiner_noun_agreement_irregular_2": {
736
+ "task": "blimp_determiner_noun_agreement_irregular_2",
737
+ "group": "blimp",
738
+ "dataset_path": "blimp",
739
+ "dataset_name": "determiner_noun_agreement_irregular_2",
740
+ "validation_split": "train",
741
+ "doc_to_text": "",
742
+ "doc_to_target": 0,
743
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
744
+ "description": "",
745
+ "target_delimiter": " ",
746
+ "fewshot_delimiter": "\n\n",
747
+ "num_fewshot": 0,
748
+ "metric_list": [
749
+ {
750
+ "metric": "acc"
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": true,
756
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
757
+ "metadata": {
758
+ "version": 1.0
759
+ }
760
+ },
761
+ "blimp_determiner_noun_agreement_with_adj_2": {
762
+ "task": "blimp_determiner_noun_agreement_with_adj_2",
763
+ "group": "blimp",
764
+ "dataset_path": "blimp",
765
+ "dataset_name": "determiner_noun_agreement_with_adj_2",
766
+ "validation_split": "train",
767
+ "doc_to_text": "",
768
+ "doc_to_target": 0,
769
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
770
+ "description": "",
771
+ "target_delimiter": " ",
772
+ "fewshot_delimiter": "\n\n",
773
+ "num_fewshot": 0,
774
+ "metric_list": [
775
+ {
776
+ "metric": "acc"
777
+ }
778
+ ],
779
+ "output_type": "multiple_choice",
780
+ "repeats": 1,
781
+ "should_decontaminate": true,
782
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
783
+ "metadata": {
784
+ "version": 1.0
785
+ }
786
+ },
787
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
788
+ "task": "blimp_determiner_noun_agreement_with_adj_irregular_1",
789
+ "group": "blimp",
790
+ "dataset_path": "blimp",
791
+ "dataset_name": "determiner_noun_agreement_with_adj_irregular_1",
792
+ "validation_split": "train",
793
+ "doc_to_text": "",
794
+ "doc_to_target": 0,
795
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
796
+ "description": "",
797
+ "target_delimiter": " ",
798
+ "fewshot_delimiter": "\n\n",
799
+ "num_fewshot": 0,
800
+ "metric_list": [
801
+ {
802
+ "metric": "acc"
803
+ }
804
+ ],
805
+ "output_type": "multiple_choice",
806
+ "repeats": 1,
807
+ "should_decontaminate": true,
808
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
809
+ "metadata": {
810
+ "version": 1.0
811
+ }
812
+ },
813
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
814
+ "task": "blimp_determiner_noun_agreement_with_adj_irregular_2",
815
+ "group": "blimp",
816
+ "dataset_path": "blimp",
817
+ "dataset_name": "determiner_noun_agreement_with_adj_irregular_2",
818
+ "validation_split": "train",
819
+ "doc_to_text": "",
820
+ "doc_to_target": 0,
821
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
822
+ "description": "",
823
+ "target_delimiter": " ",
824
+ "fewshot_delimiter": "\n\n",
825
+ "num_fewshot": 0,
826
+ "metric_list": [
827
+ {
828
+ "metric": "acc"
829
+ }
830
+ ],
831
+ "output_type": "multiple_choice",
832
+ "repeats": 1,
833
+ "should_decontaminate": true,
834
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
835
+ "metadata": {
836
+ "version": 1.0
837
+ }
838
+ },
839
+ "blimp_determiner_noun_agreement_with_adjective_1": {
840
+ "task": "blimp_determiner_noun_agreement_with_adjective_1",
841
+ "group": "blimp",
842
+ "dataset_path": "blimp",
843
+ "dataset_name": "determiner_noun_agreement_with_adjective_1",
844
+ "validation_split": "train",
845
+ "doc_to_text": "",
846
+ "doc_to_target": 0,
847
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
848
+ "description": "",
849
+ "target_delimiter": " ",
850
+ "fewshot_delimiter": "\n\n",
851
+ "num_fewshot": 0,
852
+ "metric_list": [
853
+ {
854
+ "metric": "acc"
855
+ }
856
+ ],
857
+ "output_type": "multiple_choice",
858
+ "repeats": 1,
859
+ "should_decontaminate": true,
860
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
861
+ "metadata": {
862
+ "version": 1.0
863
+ }
864
+ },
865
+ "blimp_distractor_agreement_relational_noun": {
866
+ "task": "blimp_distractor_agreement_relational_noun",
867
+ "group": "blimp",
868
+ "dataset_path": "blimp",
869
+ "dataset_name": "distractor_agreement_relational_noun",
870
+ "validation_split": "train",
871
+ "doc_to_text": "",
872
+ "doc_to_target": 0,
873
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
874
+ "description": "",
875
+ "target_delimiter": " ",
876
+ "fewshot_delimiter": "\n\n",
877
+ "num_fewshot": 0,
878
+ "metric_list": [
879
+ {
880
+ "metric": "acc"
881
+ }
882
+ ],
883
+ "output_type": "multiple_choice",
884
+ "repeats": 1,
885
+ "should_decontaminate": true,
886
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
887
+ "metadata": {
888
+ "version": 1.0
889
+ }
890
+ },
891
+ "blimp_distractor_agreement_relative_clause": {
892
+ "task": "blimp_distractor_agreement_relative_clause",
893
+ "group": "blimp",
894
+ "dataset_path": "blimp",
895
+ "dataset_name": "distractor_agreement_relative_clause",
896
+ "validation_split": "train",
897
+ "doc_to_text": "",
898
+ "doc_to_target": 0,
899
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
900
+ "description": "",
901
+ "target_delimiter": " ",
902
+ "fewshot_delimiter": "\n\n",
903
+ "num_fewshot": 0,
904
+ "metric_list": [
905
+ {
906
+ "metric": "acc"
907
+ }
908
+ ],
909
+ "output_type": "multiple_choice",
910
+ "repeats": 1,
911
+ "should_decontaminate": true,
912
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
913
+ "metadata": {
914
+ "version": 1.0
915
+ }
916
+ },
917
+ "blimp_drop_argument": {
918
+ "task": "blimp_drop_argument",
919
+ "group": "blimp",
920
+ "dataset_path": "blimp",
921
+ "dataset_name": "drop_argument",
922
+ "validation_split": "train",
923
+ "doc_to_text": "",
924
+ "doc_to_target": 0,
925
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
926
+ "description": "",
927
+ "target_delimiter": " ",
928
+ "fewshot_delimiter": "\n\n",
929
+ "num_fewshot": 0,
930
+ "metric_list": [
931
+ {
932
+ "metric": "acc"
933
+ }
934
+ ],
935
+ "output_type": "multiple_choice",
936
+ "repeats": 1,
937
+ "should_decontaminate": true,
938
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
939
+ "metadata": {
940
+ "version": 1.0
941
+ }
942
+ },
943
+ "blimp_ellipsis_n_bar_1": {
944
+ "task": "blimp_ellipsis_n_bar_1",
945
+ "group": "blimp",
946
+ "dataset_path": "blimp",
947
+ "dataset_name": "ellipsis_n_bar_1",
948
+ "validation_split": "train",
949
+ "doc_to_text": "",
950
+ "doc_to_target": 0,
951
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
952
+ "description": "",
953
+ "target_delimiter": " ",
954
+ "fewshot_delimiter": "\n\n",
955
+ "num_fewshot": 0,
956
+ "metric_list": [
957
+ {
958
+ "metric": "acc"
959
+ }
960
+ ],
961
+ "output_type": "multiple_choice",
962
+ "repeats": 1,
963
+ "should_decontaminate": true,
964
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
965
+ "metadata": {
966
+ "version": 1.0
967
+ }
968
+ },
969
+ "blimp_ellipsis_n_bar_2": {
970
+ "task": "blimp_ellipsis_n_bar_2",
971
+ "group": "blimp",
972
+ "dataset_path": "blimp",
973
+ "dataset_name": "ellipsis_n_bar_2",
974
+ "validation_split": "train",
975
+ "doc_to_text": "",
976
+ "doc_to_target": 0,
977
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
978
+ "description": "",
979
+ "target_delimiter": " ",
980
+ "fewshot_delimiter": "\n\n",
981
+ "num_fewshot": 0,
982
+ "metric_list": [
983
+ {
984
+ "metric": "acc"
985
+ }
986
+ ],
987
+ "output_type": "multiple_choice",
988
+ "repeats": 1,
989
+ "should_decontaminate": true,
990
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
991
+ "metadata": {
992
+ "version": 1.0
993
+ }
994
+ },
995
+ "blimp_existential_there_object_raising": {
996
+ "task": "blimp_existential_there_object_raising",
997
+ "group": "blimp",
998
+ "dataset_path": "blimp",
999
+ "dataset_name": "existential_there_object_raising",
1000
+ "validation_split": "train",
1001
+ "doc_to_text": "",
1002
+ "doc_to_target": 0,
1003
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1004
+ "description": "",
1005
+ "target_delimiter": " ",
1006
+ "fewshot_delimiter": "\n\n",
1007
+ "num_fewshot": 0,
1008
+ "metric_list": [
1009
+ {
1010
+ "metric": "acc"
1011
+ }
1012
+ ],
1013
+ "output_type": "multiple_choice",
1014
+ "repeats": 1,
1015
+ "should_decontaminate": true,
1016
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1017
+ "metadata": {
1018
+ "version": 1.0
1019
+ }
1020
+ },
1021
+ "blimp_existential_there_quantifiers_1": {
1022
+ "task": "blimp_existential_there_quantifiers_1",
1023
+ "group": "blimp",
1024
+ "dataset_path": "blimp",
1025
+ "dataset_name": "existential_there_quantifiers_1",
1026
+ "validation_split": "train",
1027
+ "doc_to_text": "",
1028
+ "doc_to_target": 0,
1029
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1030
+ "description": "",
1031
+ "target_delimiter": " ",
1032
+ "fewshot_delimiter": "\n\n",
1033
+ "num_fewshot": 0,
1034
+ "metric_list": [
1035
+ {
1036
+ "metric": "acc"
1037
+ }
1038
+ ],
1039
+ "output_type": "multiple_choice",
1040
+ "repeats": 1,
1041
+ "should_decontaminate": true,
1042
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1043
+ "metadata": {
1044
+ "version": 1.0
1045
+ }
1046
+ },
1047
+ "blimp_existential_there_quantifiers_2": {
1048
+ "task": "blimp_existential_there_quantifiers_2",
1049
+ "group": "blimp",
1050
+ "dataset_path": "blimp",
1051
+ "dataset_name": "existential_there_quantifiers_2",
1052
+ "validation_split": "train",
1053
+ "doc_to_text": "",
1054
+ "doc_to_target": 0,
1055
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1056
+ "description": "",
1057
+ "target_delimiter": " ",
1058
+ "fewshot_delimiter": "\n\n",
1059
+ "num_fewshot": 0,
1060
+ "metric_list": [
1061
+ {
1062
+ "metric": "acc"
1063
+ }
1064
+ ],
1065
+ "output_type": "multiple_choice",
1066
+ "repeats": 1,
1067
+ "should_decontaminate": true,
1068
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1069
+ "metadata": {
1070
+ "version": 1.0
1071
+ }
1072
+ },
1073
+ "blimp_existential_there_subject_raising": {
1074
+ "task": "blimp_existential_there_subject_raising",
1075
+ "group": "blimp",
1076
+ "dataset_path": "blimp",
1077
+ "dataset_name": "existential_there_subject_raising",
1078
+ "validation_split": "train",
1079
+ "doc_to_text": "",
1080
+ "doc_to_target": 0,
1081
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1082
+ "description": "",
1083
+ "target_delimiter": " ",
1084
+ "fewshot_delimiter": "\n\n",
1085
+ "num_fewshot": 0,
1086
+ "metric_list": [
1087
+ {
1088
+ "metric": "acc"
1089
+ }
1090
+ ],
1091
+ "output_type": "multiple_choice",
1092
+ "repeats": 1,
1093
+ "should_decontaminate": true,
1094
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1095
+ "metadata": {
1096
+ "version": 1.0
1097
+ }
1098
+ },
1099
+ "blimp_expletive_it_object_raising": {
1100
+ "task": "blimp_expletive_it_object_raising",
1101
+ "group": "blimp",
1102
+ "dataset_path": "blimp",
1103
+ "dataset_name": "expletive_it_object_raising",
1104
+ "validation_split": "train",
1105
+ "doc_to_text": "",
1106
+ "doc_to_target": 0,
1107
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1108
+ "description": "",
1109
+ "target_delimiter": " ",
1110
+ "fewshot_delimiter": "\n\n",
1111
+ "num_fewshot": 0,
1112
+ "metric_list": [
1113
+ {
1114
+ "metric": "acc"
1115
+ }
1116
+ ],
1117
+ "output_type": "multiple_choice",
1118
+ "repeats": 1,
1119
+ "should_decontaminate": true,
1120
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1121
+ "metadata": {
1122
+ "version": 1.0
1123
+ }
1124
+ },
1125
+ "blimp_inchoative": {
1126
+ "task": "blimp_inchoative",
1127
+ "group": "blimp",
1128
+ "dataset_path": "blimp",
1129
+ "dataset_name": "inchoative",
1130
+ "validation_split": "train",
1131
+ "doc_to_text": "",
1132
+ "doc_to_target": 0,
1133
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1134
+ "description": "",
1135
+ "target_delimiter": " ",
1136
+ "fewshot_delimiter": "\n\n",
1137
+ "num_fewshot": 0,
1138
+ "metric_list": [
1139
+ {
1140
+ "metric": "acc"
1141
+ }
1142
+ ],
1143
+ "output_type": "multiple_choice",
1144
+ "repeats": 1,
1145
+ "should_decontaminate": true,
1146
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1147
+ "metadata": {
1148
+ "version": 1.0
1149
+ }
1150
+ },
1151
+ "blimp_intransitive": {
1152
+ "task": "blimp_intransitive",
1153
+ "group": "blimp",
1154
+ "dataset_path": "blimp",
1155
+ "dataset_name": "intransitive",
1156
+ "validation_split": "train",
1157
+ "doc_to_text": "",
1158
+ "doc_to_target": 0,
1159
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1160
+ "description": "",
1161
+ "target_delimiter": " ",
1162
+ "fewshot_delimiter": "\n\n",
1163
+ "num_fewshot": 0,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc"
1167
+ }
1168
+ ],
1169
+ "output_type": "multiple_choice",
1170
+ "repeats": 1,
1171
+ "should_decontaminate": true,
1172
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1173
+ "metadata": {
1174
+ "version": 1.0
1175
+ }
1176
+ },
1177
+ "blimp_irregular_past_participle_adjectives": {
1178
+ "task": "blimp_irregular_past_participle_adjectives",
1179
+ "group": "blimp",
1180
+ "dataset_path": "blimp",
1181
+ "dataset_name": "irregular_past_participle_adjectives",
1182
+ "validation_split": "train",
1183
+ "doc_to_text": "",
1184
+ "doc_to_target": 0,
1185
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1186
+ "description": "",
1187
+ "target_delimiter": " ",
1188
+ "fewshot_delimiter": "\n\n",
1189
+ "num_fewshot": 0,
1190
+ "metric_list": [
1191
+ {
1192
+ "metric": "acc"
1193
+ }
1194
+ ],
1195
+ "output_type": "multiple_choice",
1196
+ "repeats": 1,
1197
+ "should_decontaminate": true,
1198
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1199
+ "metadata": {
1200
+ "version": 1.0
1201
+ }
1202
+ },
1203
+ "blimp_irregular_past_participle_verbs": {
1204
+ "task": "blimp_irregular_past_participle_verbs",
1205
+ "group": "blimp",
1206
+ "dataset_path": "blimp",
1207
+ "dataset_name": "irregular_past_participle_verbs",
1208
+ "validation_split": "train",
1209
+ "doc_to_text": "",
1210
+ "doc_to_target": 0,
1211
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1212
+ "description": "",
1213
+ "target_delimiter": " ",
1214
+ "fewshot_delimiter": "\n\n",
1215
+ "num_fewshot": 0,
1216
+ "metric_list": [
1217
+ {
1218
+ "metric": "acc"
1219
+ }
1220
+ ],
1221
+ "output_type": "multiple_choice",
1222
+ "repeats": 1,
1223
+ "should_decontaminate": true,
1224
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1225
+ "metadata": {
1226
+ "version": 1.0
1227
+ }
1228
+ },
1229
+ "blimp_irregular_plural_subject_verb_agreement_1": {
1230
+ "task": "blimp_irregular_plural_subject_verb_agreement_1",
1231
+ "group": "blimp",
1232
+ "dataset_path": "blimp",
1233
+ "dataset_name": "irregular_plural_subject_verb_agreement_1",
1234
+ "validation_split": "train",
1235
+ "doc_to_text": "",
1236
+ "doc_to_target": 0,
1237
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1238
+ "description": "",
1239
+ "target_delimiter": " ",
1240
+ "fewshot_delimiter": "\n\n",
1241
+ "num_fewshot": 0,
1242
+ "metric_list": [
1243
+ {
1244
+ "metric": "acc"
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": true,
1250
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1251
+ "metadata": {
1252
+ "version": 1.0
1253
+ }
1254
+ },
1255
+ "blimp_irregular_plural_subject_verb_agreement_2": {
1256
+ "task": "blimp_irregular_plural_subject_verb_agreement_2",
1257
+ "group": "blimp",
1258
+ "dataset_path": "blimp",
1259
+ "dataset_name": "irregular_plural_subject_verb_agreement_2",
1260
+ "validation_split": "train",
1261
+ "doc_to_text": "",
1262
+ "doc_to_target": 0,
1263
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1264
+ "description": "",
1265
+ "target_delimiter": " ",
1266
+ "fewshot_delimiter": "\n\n",
1267
+ "num_fewshot": 0,
1268
+ "metric_list": [
1269
+ {
1270
+ "metric": "acc"
1271
+ }
1272
+ ],
1273
+ "output_type": "multiple_choice",
1274
+ "repeats": 1,
1275
+ "should_decontaminate": true,
1276
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1277
+ "metadata": {
1278
+ "version": 1.0
1279
+ }
1280
+ },
1281
+ "blimp_left_branch_island_echo_question": {
1282
+ "task": "blimp_left_branch_island_echo_question",
1283
+ "group": "blimp",
1284
+ "dataset_path": "blimp",
1285
+ "dataset_name": "left_branch_island_echo_question",
1286
+ "validation_split": "train",
1287
+ "doc_to_text": "",
1288
+ "doc_to_target": 0,
1289
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1290
+ "description": "",
1291
+ "target_delimiter": " ",
1292
+ "fewshot_delimiter": "\n\n",
1293
+ "num_fewshot": 0,
1294
+ "metric_list": [
1295
+ {
1296
+ "metric": "acc"
1297
+ }
1298
+ ],
1299
+ "output_type": "multiple_choice",
1300
+ "repeats": 1,
1301
+ "should_decontaminate": true,
1302
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1303
+ "metadata": {
1304
+ "version": 1.0
1305
+ }
1306
+ },
1307
+ "blimp_left_branch_island_simple_question": {
1308
+ "task": "blimp_left_branch_island_simple_question",
1309
+ "group": "blimp",
1310
+ "dataset_path": "blimp",
1311
+ "dataset_name": "left_branch_island_simple_question",
1312
+ "validation_split": "train",
1313
+ "doc_to_text": "",
1314
+ "doc_to_target": 0,
1315
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1316
+ "description": "",
1317
+ "target_delimiter": " ",
1318
+ "fewshot_delimiter": "\n\n",
1319
+ "num_fewshot": 0,
1320
+ "metric_list": [
1321
+ {
1322
+ "metric": "acc"
1323
+ }
1324
+ ],
1325
+ "output_type": "multiple_choice",
1326
+ "repeats": 1,
1327
+ "should_decontaminate": true,
1328
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1329
+ "metadata": {
1330
+ "version": 1.0
1331
+ }
1332
+ },
1333
+ "blimp_matrix_question_npi_licensor_present": {
1334
+ "task": "blimp_matrix_question_npi_licensor_present",
1335
+ "group": "blimp",
1336
+ "dataset_path": "blimp",
1337
+ "dataset_name": "matrix_question_npi_licensor_present",
1338
+ "validation_split": "train",
1339
+ "doc_to_text": "",
1340
+ "doc_to_target": 0,
1341
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1342
+ "description": "",
1343
+ "target_delimiter": " ",
1344
+ "fewshot_delimiter": "\n\n",
1345
+ "num_fewshot": 0,
1346
+ "metric_list": [
1347
+ {
1348
+ "metric": "acc"
1349
+ }
1350
+ ],
1351
+ "output_type": "multiple_choice",
1352
+ "repeats": 1,
1353
+ "should_decontaminate": true,
1354
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1355
+ "metadata": {
1356
+ "version": 1.0
1357
+ }
1358
+ },
1359
+ "blimp_npi_present_1": {
1360
+ "task": "blimp_npi_present_1",
1361
+ "group": "blimp",
1362
+ "dataset_path": "blimp",
1363
+ "dataset_name": "npi_present_1",
1364
+ "validation_split": "train",
1365
+ "doc_to_text": "",
1366
+ "doc_to_target": 0,
1367
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1368
+ "description": "",
1369
+ "target_delimiter": " ",
1370
+ "fewshot_delimiter": "\n\n",
1371
+ "num_fewshot": 0,
1372
+ "metric_list": [
1373
+ {
1374
+ "metric": "acc"
1375
+ }
1376
+ ],
1377
+ "output_type": "multiple_choice",
1378
+ "repeats": 1,
1379
+ "should_decontaminate": true,
1380
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1381
+ "metadata": {
1382
+ "version": 1.0
1383
+ }
1384
+ },
1385
+ "blimp_npi_present_2": {
1386
+ "task": "blimp_npi_present_2",
1387
+ "group": "blimp",
1388
+ "dataset_path": "blimp",
1389
+ "dataset_name": "npi_present_2",
1390
+ "validation_split": "train",
1391
+ "doc_to_text": "",
1392
+ "doc_to_target": 0,
1393
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1394
+ "description": "",
1395
+ "target_delimiter": " ",
1396
+ "fewshot_delimiter": "\n\n",
1397
+ "num_fewshot": 0,
1398
+ "metric_list": [
1399
+ {
1400
+ "metric": "acc"
1401
+ }
1402
+ ],
1403
+ "output_type": "multiple_choice",
1404
+ "repeats": 1,
1405
+ "should_decontaminate": true,
1406
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1407
+ "metadata": {
1408
+ "version": 1.0
1409
+ }
1410
+ },
1411
+ "blimp_only_npi_licensor_present": {
1412
+ "task": "blimp_only_npi_licensor_present",
1413
+ "group": "blimp",
1414
+ "dataset_path": "blimp",
1415
+ "dataset_name": "only_npi_licensor_present",
1416
+ "validation_split": "train",
1417
+ "doc_to_text": "",
1418
+ "doc_to_target": 0,
1419
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1420
+ "description": "",
1421
+ "target_delimiter": " ",
1422
+ "fewshot_delimiter": "\n\n",
1423
+ "num_fewshot": 0,
1424
+ "metric_list": [
1425
+ {
1426
+ "metric": "acc"
1427
+ }
1428
+ ],
1429
+ "output_type": "multiple_choice",
1430
+ "repeats": 1,
1431
+ "should_decontaminate": true,
1432
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1433
+ "metadata": {
1434
+ "version": 1.0
1435
+ }
1436
+ },
1437
+ "blimp_only_npi_scope": {
1438
+ "task": "blimp_only_npi_scope",
1439
+ "group": "blimp",
1440
+ "dataset_path": "blimp",
1441
+ "dataset_name": "only_npi_scope",
1442
+ "validation_split": "train",
1443
+ "doc_to_text": "",
1444
+ "doc_to_target": 0,
1445
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1446
+ "description": "",
1447
+ "target_delimiter": " ",
1448
+ "fewshot_delimiter": "\n\n",
1449
+ "num_fewshot": 0,
1450
+ "metric_list": [
1451
+ {
1452
+ "metric": "acc"
1453
+ }
1454
+ ],
1455
+ "output_type": "multiple_choice",
1456
+ "repeats": 1,
1457
+ "should_decontaminate": true,
1458
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1459
+ "metadata": {
1460
+ "version": 1.0
1461
+ }
1462
+ },
1463
+ "blimp_passive_1": {
1464
+ "task": "blimp_passive_1",
1465
+ "group": "blimp",
1466
+ "dataset_path": "blimp",
1467
+ "dataset_name": "passive_1",
1468
+ "validation_split": "train",
1469
+ "doc_to_text": "",
1470
+ "doc_to_target": 0,
1471
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1472
+ "description": "",
1473
+ "target_delimiter": " ",
1474
+ "fewshot_delimiter": "\n\n",
1475
+ "num_fewshot": 0,
1476
+ "metric_list": [
1477
+ {
1478
+ "metric": "acc"
1479
+ }
1480
+ ],
1481
+ "output_type": "multiple_choice",
1482
+ "repeats": 1,
1483
+ "should_decontaminate": true,
1484
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1485
+ "metadata": {
1486
+ "version": 1.0
1487
+ }
1488
+ },
1489
+ "blimp_passive_2": {
1490
+ "task": "blimp_passive_2",
1491
+ "group": "blimp",
1492
+ "dataset_path": "blimp",
1493
+ "dataset_name": "passive_2",
1494
+ "validation_split": "train",
1495
+ "doc_to_text": "",
1496
+ "doc_to_target": 0,
1497
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1498
+ "description": "",
1499
+ "target_delimiter": " ",
1500
+ "fewshot_delimiter": "\n\n",
1501
+ "num_fewshot": 0,
1502
+ "metric_list": [
1503
+ {
1504
+ "metric": "acc"
1505
+ }
1506
+ ],
1507
+ "output_type": "multiple_choice",
1508
+ "repeats": 1,
1509
+ "should_decontaminate": true,
1510
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1511
+ "metadata": {
1512
+ "version": 1.0
1513
+ }
1514
+ },
1515
+ "blimp_principle_A_c_command": {
1516
+ "task": "blimp_principle_A_c_command",
1517
+ "group": "blimp",
1518
+ "dataset_path": "blimp",
1519
+ "dataset_name": "principle_A_c_command",
1520
+ "validation_split": "train",
1521
+ "doc_to_text": "",
1522
+ "doc_to_target": 0,
1523
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1524
+ "description": "",
1525
+ "target_delimiter": " ",
1526
+ "fewshot_delimiter": "\n\n",
1527
+ "num_fewshot": 0,
1528
+ "metric_list": [
1529
+ {
1530
+ "metric": "acc"
1531
+ }
1532
+ ],
1533
+ "output_type": "multiple_choice",
1534
+ "repeats": 1,
1535
+ "should_decontaminate": true,
1536
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1537
+ "metadata": {
1538
+ "version": 1.0
1539
+ }
1540
+ },
1541
+ "blimp_principle_A_case_1": {
1542
+ "task": "blimp_principle_A_case_1",
1543
+ "group": "blimp",
1544
+ "dataset_path": "blimp",
1545
+ "dataset_name": "principle_A_case_1",
1546
+ "validation_split": "train",
1547
+ "doc_to_text": "",
1548
+ "doc_to_target": 0,
1549
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1550
+ "description": "",
1551
+ "target_delimiter": " ",
1552
+ "fewshot_delimiter": "\n\n",
1553
+ "num_fewshot": 0,
1554
+ "metric_list": [
1555
+ {
1556
+ "metric": "acc"
1557
+ }
1558
+ ],
1559
+ "output_type": "multiple_choice",
1560
+ "repeats": 1,
1561
+ "should_decontaminate": true,
1562
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1563
+ "metadata": {
1564
+ "version": 1.0
1565
+ }
1566
+ },
1567
+ "blimp_principle_A_case_2": {
1568
+ "task": "blimp_principle_A_case_2",
1569
+ "group": "blimp",
1570
+ "dataset_path": "blimp",
1571
+ "dataset_name": "principle_A_case_2",
1572
+ "validation_split": "train",
1573
+ "doc_to_text": "",
1574
+ "doc_to_target": 0,
1575
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1576
+ "description": "",
1577
+ "target_delimiter": " ",
1578
+ "fewshot_delimiter": "\n\n",
1579
+ "num_fewshot": 0,
1580
+ "metric_list": [
1581
+ {
1582
+ "metric": "acc"
1583
+ }
1584
+ ],
1585
+ "output_type": "multiple_choice",
1586
+ "repeats": 1,
1587
+ "should_decontaminate": true,
1588
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1589
+ "metadata": {
1590
+ "version": 1.0
1591
+ }
1592
+ },
1593
+ "blimp_principle_A_domain_1": {
1594
+ "task": "blimp_principle_A_domain_1",
1595
+ "group": "blimp",
1596
+ "dataset_path": "blimp",
1597
+ "dataset_name": "principle_A_domain_1",
1598
+ "validation_split": "train",
1599
+ "doc_to_text": "",
1600
+ "doc_to_target": 0,
1601
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1602
+ "description": "",
1603
+ "target_delimiter": " ",
1604
+ "fewshot_delimiter": "\n\n",
1605
+ "num_fewshot": 0,
1606
+ "metric_list": [
1607
+ {
1608
+ "metric": "acc"
1609
+ }
1610
+ ],
1611
+ "output_type": "multiple_choice",
1612
+ "repeats": 1,
1613
+ "should_decontaminate": true,
1614
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1615
+ "metadata": {
1616
+ "version": 1.0
1617
+ }
1618
+ },
1619
+ "blimp_principle_A_domain_2": {
1620
+ "task": "blimp_principle_A_domain_2",
1621
+ "group": "blimp",
1622
+ "dataset_path": "blimp",
1623
+ "dataset_name": "principle_A_domain_2",
1624
+ "validation_split": "train",
1625
+ "doc_to_text": "",
1626
+ "doc_to_target": 0,
1627
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1628
+ "description": "",
1629
+ "target_delimiter": " ",
1630
+ "fewshot_delimiter": "\n\n",
1631
+ "num_fewshot": 0,
1632
+ "metric_list": [
1633
+ {
1634
+ "metric": "acc"
1635
+ }
1636
+ ],
1637
+ "output_type": "multiple_choice",
1638
+ "repeats": 1,
1639
+ "should_decontaminate": true,
1640
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1641
+ "metadata": {
1642
+ "version": 1.0
1643
+ }
1644
+ },
1645
+ "blimp_principle_A_domain_3": {
1646
+ "task": "blimp_principle_A_domain_3",
1647
+ "group": "blimp",
1648
+ "dataset_path": "blimp",
1649
+ "dataset_name": "principle_A_domain_3",
1650
+ "validation_split": "train",
1651
+ "doc_to_text": "",
1652
+ "doc_to_target": 0,
1653
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1654
+ "description": "",
1655
+ "target_delimiter": " ",
1656
+ "fewshot_delimiter": "\n\n",
1657
+ "num_fewshot": 0,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc"
1661
+ }
1662
+ ],
1663
+ "output_type": "multiple_choice",
1664
+ "repeats": 1,
1665
+ "should_decontaminate": true,
1666
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1667
+ "metadata": {
1668
+ "version": 1.0
1669
+ }
1670
+ },
1671
+ "blimp_principle_A_reconstruction": {
1672
+ "task": "blimp_principle_A_reconstruction",
1673
+ "group": "blimp",
1674
+ "dataset_path": "blimp",
1675
+ "dataset_name": "principle_A_reconstruction",
1676
+ "validation_split": "train",
1677
+ "doc_to_text": "",
1678
+ "doc_to_target": 0,
1679
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1680
+ "description": "",
1681
+ "target_delimiter": " ",
1682
+ "fewshot_delimiter": "\n\n",
1683
+ "num_fewshot": 0,
1684
+ "metric_list": [
1685
+ {
1686
+ "metric": "acc"
1687
+ }
1688
+ ],
1689
+ "output_type": "multiple_choice",
1690
+ "repeats": 1,
1691
+ "should_decontaminate": true,
1692
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1693
+ "metadata": {
1694
+ "version": 1.0
1695
+ }
1696
+ },
1697
+ "blimp_regular_plural_subject_verb_agreement_1": {
1698
+ "task": "blimp_regular_plural_subject_verb_agreement_1",
1699
+ "group": "blimp",
1700
+ "dataset_path": "blimp",
1701
+ "dataset_name": "regular_plural_subject_verb_agreement_1",
1702
+ "validation_split": "train",
1703
+ "doc_to_text": "",
1704
+ "doc_to_target": 0,
1705
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1706
+ "description": "",
1707
+ "target_delimiter": " ",
1708
+ "fewshot_delimiter": "\n\n",
1709
+ "num_fewshot": 0,
1710
+ "metric_list": [
1711
+ {
1712
+ "metric": "acc"
1713
+ }
1714
+ ],
1715
+ "output_type": "multiple_choice",
1716
+ "repeats": 1,
1717
+ "should_decontaminate": true,
1718
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1719
+ "metadata": {
1720
+ "version": 1.0
1721
+ }
1722
+ },
1723
+ "blimp_regular_plural_subject_verb_agreement_2": {
1724
+ "task": "blimp_regular_plural_subject_verb_agreement_2",
1725
+ "group": "blimp",
1726
+ "dataset_path": "blimp",
1727
+ "dataset_name": "regular_plural_subject_verb_agreement_2",
1728
+ "validation_split": "train",
1729
+ "doc_to_text": "",
1730
+ "doc_to_target": 0,
1731
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1732
+ "description": "",
1733
+ "target_delimiter": " ",
1734
+ "fewshot_delimiter": "\n\n",
1735
+ "num_fewshot": 0,
1736
+ "metric_list": [
1737
+ {
1738
+ "metric": "acc"
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": true,
1744
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1745
+ "metadata": {
1746
+ "version": 1.0
1747
+ }
1748
+ },
1749
+ "blimp_sentential_negation_npi_licensor_present": {
1750
+ "task": "blimp_sentential_negation_npi_licensor_present",
1751
+ "group": "blimp",
1752
+ "dataset_path": "blimp",
1753
+ "dataset_name": "sentential_negation_npi_licensor_present",
1754
+ "validation_split": "train",
1755
+ "doc_to_text": "",
1756
+ "doc_to_target": 0,
1757
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1758
+ "description": "",
1759
+ "target_delimiter": " ",
1760
+ "fewshot_delimiter": "\n\n",
1761
+ "num_fewshot": 0,
1762
+ "metric_list": [
1763
+ {
1764
+ "metric": "acc"
1765
+ }
1766
+ ],
1767
+ "output_type": "multiple_choice",
1768
+ "repeats": 1,
1769
+ "should_decontaminate": true,
1770
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1771
+ "metadata": {
1772
+ "version": 1.0
1773
+ }
1774
+ },
1775
+ "blimp_sentential_negation_npi_scope": {
1776
+ "task": "blimp_sentential_negation_npi_scope",
1777
+ "group": "blimp",
1778
+ "dataset_path": "blimp",
1779
+ "dataset_name": "sentential_negation_npi_scope",
1780
+ "validation_split": "train",
1781
+ "doc_to_text": "",
1782
+ "doc_to_target": 0,
1783
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1784
+ "description": "",
1785
+ "target_delimiter": " ",
1786
+ "fewshot_delimiter": "\n\n",
1787
+ "num_fewshot": 0,
1788
+ "metric_list": [
1789
+ {
1790
+ "metric": "acc"
1791
+ }
1792
+ ],
1793
+ "output_type": "multiple_choice",
1794
+ "repeats": 1,
1795
+ "should_decontaminate": true,
1796
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1797
+ "metadata": {
1798
+ "version": 1.0
1799
+ }
1800
+ },
1801
+ "blimp_sentential_subject_island": {
1802
+ "task": "blimp_sentential_subject_island",
1803
+ "group": "blimp",
1804
+ "dataset_path": "blimp",
1805
+ "dataset_name": "sentential_subject_island",
1806
+ "validation_split": "train",
1807
+ "doc_to_text": "",
1808
+ "doc_to_target": 0,
1809
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1810
+ "description": "",
1811
+ "target_delimiter": " ",
1812
+ "fewshot_delimiter": "\n\n",
1813
+ "num_fewshot": 0,
1814
+ "metric_list": [
1815
+ {
1816
+ "metric": "acc"
1817
+ }
1818
+ ],
1819
+ "output_type": "multiple_choice",
1820
+ "repeats": 1,
1821
+ "should_decontaminate": true,
1822
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1823
+ "metadata": {
1824
+ "version": 1.0
1825
+ }
1826
+ },
1827
+ "blimp_superlative_quantifiers_1": {
1828
+ "task": "blimp_superlative_quantifiers_1",
1829
+ "group": "blimp",
1830
+ "dataset_path": "blimp",
1831
+ "dataset_name": "superlative_quantifiers_1",
1832
+ "validation_split": "train",
1833
+ "doc_to_text": "",
1834
+ "doc_to_target": 0,
1835
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1836
+ "description": "",
1837
+ "target_delimiter": " ",
1838
+ "fewshot_delimiter": "\n\n",
1839
+ "num_fewshot": 0,
1840
+ "metric_list": [
1841
+ {
1842
+ "metric": "acc"
1843
+ }
1844
+ ],
1845
+ "output_type": "multiple_choice",
1846
+ "repeats": 1,
1847
+ "should_decontaminate": true,
1848
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1849
+ "metadata": {
1850
+ "version": 1.0
1851
+ }
1852
+ },
1853
+ "blimp_superlative_quantifiers_2": {
1854
+ "task": "blimp_superlative_quantifiers_2",
1855
+ "group": "blimp",
1856
+ "dataset_path": "blimp",
1857
+ "dataset_name": "superlative_quantifiers_2",
1858
+ "validation_split": "train",
1859
+ "doc_to_text": "",
1860
+ "doc_to_target": 0,
1861
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1862
+ "description": "",
1863
+ "target_delimiter": " ",
1864
+ "fewshot_delimiter": "\n\n",
1865
+ "num_fewshot": 0,
1866
+ "metric_list": [
1867
+ {
1868
+ "metric": "acc"
1869
+ }
1870
+ ],
1871
+ "output_type": "multiple_choice",
1872
+ "repeats": 1,
1873
+ "should_decontaminate": true,
1874
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1875
+ "metadata": {
1876
+ "version": 1.0
1877
+ }
1878
+ },
1879
+ "blimp_tough_vs_raising_1": {
1880
+ "task": "blimp_tough_vs_raising_1",
1881
+ "group": "blimp",
1882
+ "dataset_path": "blimp",
1883
+ "dataset_name": "tough_vs_raising_1",
1884
+ "validation_split": "train",
1885
+ "doc_to_text": "",
1886
+ "doc_to_target": 0,
1887
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1888
+ "description": "",
1889
+ "target_delimiter": " ",
1890
+ "fewshot_delimiter": "\n\n",
1891
+ "num_fewshot": 0,
1892
+ "metric_list": [
1893
+ {
1894
+ "metric": "acc"
1895
+ }
1896
+ ],
1897
+ "output_type": "multiple_choice",
1898
+ "repeats": 1,
1899
+ "should_decontaminate": true,
1900
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1901
+ "metadata": {
1902
+ "version": 1.0
1903
+ }
1904
+ },
1905
+ "blimp_tough_vs_raising_2": {
1906
+ "task": "blimp_tough_vs_raising_2",
1907
+ "group": "blimp",
1908
+ "dataset_path": "blimp",
1909
+ "dataset_name": "tough_vs_raising_2",
1910
+ "validation_split": "train",
1911
+ "doc_to_text": "",
1912
+ "doc_to_target": 0,
1913
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1914
+ "description": "",
1915
+ "target_delimiter": " ",
1916
+ "fewshot_delimiter": "\n\n",
1917
+ "num_fewshot": 0,
1918
+ "metric_list": [
1919
+ {
1920
+ "metric": "acc"
1921
+ }
1922
+ ],
1923
+ "output_type": "multiple_choice",
1924
+ "repeats": 1,
1925
+ "should_decontaminate": true,
1926
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1927
+ "metadata": {
1928
+ "version": 1.0
1929
+ }
1930
+ },
1931
+ "blimp_transitive": {
1932
+ "task": "blimp_transitive",
1933
+ "group": "blimp",
1934
+ "dataset_path": "blimp",
1935
+ "dataset_name": "transitive",
1936
+ "validation_split": "train",
1937
+ "doc_to_text": "",
1938
+ "doc_to_target": 0,
1939
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1940
+ "description": "",
1941
+ "target_delimiter": " ",
1942
+ "fewshot_delimiter": "\n\n",
1943
+ "num_fewshot": 0,
1944
+ "metric_list": [
1945
+ {
1946
+ "metric": "acc"
1947
+ }
1948
+ ],
1949
+ "output_type": "multiple_choice",
1950
+ "repeats": 1,
1951
+ "should_decontaminate": true,
1952
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1953
+ "metadata": {
1954
+ "version": 1.0
1955
+ }
1956
+ },
1957
+ "blimp_wh_island": {
1958
+ "task": "blimp_wh_island",
1959
+ "group": "blimp",
1960
+ "dataset_path": "blimp",
1961
+ "dataset_name": "wh_island",
1962
+ "validation_split": "train",
1963
+ "doc_to_text": "",
1964
+ "doc_to_target": 0,
1965
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1966
+ "description": "",
1967
+ "target_delimiter": " ",
1968
+ "fewshot_delimiter": "\n\n",
1969
+ "num_fewshot": 0,
1970
+ "metric_list": [
1971
+ {
1972
+ "metric": "acc"
1973
+ }
1974
+ ],
1975
+ "output_type": "multiple_choice",
1976
+ "repeats": 1,
1977
+ "should_decontaminate": true,
1978
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1979
+ "metadata": {
1980
+ "version": 1.0
1981
+ }
1982
+ },
1983
+ "blimp_wh_questions_object_gap": {
1984
+ "task": "blimp_wh_questions_object_gap",
1985
+ "group": "blimp",
1986
+ "dataset_path": "blimp",
1987
+ "dataset_name": "wh_questions_object_gap",
1988
+ "validation_split": "train",
1989
+ "doc_to_text": "",
1990
+ "doc_to_target": 0,
1991
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1992
+ "description": "",
1993
+ "target_delimiter": " ",
1994
+ "fewshot_delimiter": "\n\n",
1995
+ "num_fewshot": 0,
1996
+ "metric_list": [
1997
+ {
1998
+ "metric": "acc"
1999
+ }
2000
+ ],
2001
+ "output_type": "multiple_choice",
2002
+ "repeats": 1,
2003
+ "should_decontaminate": true,
2004
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2005
+ "metadata": {
2006
+ "version": 1.0
2007
+ }
2008
+ },
2009
+ "blimp_wh_questions_subject_gap": {
2010
+ "task": "blimp_wh_questions_subject_gap",
2011
+ "group": "blimp",
2012
+ "dataset_path": "blimp",
2013
+ "dataset_name": "wh_questions_subject_gap",
2014
+ "validation_split": "train",
2015
+ "doc_to_text": "",
2016
+ "doc_to_target": 0,
2017
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2018
+ "description": "",
2019
+ "target_delimiter": " ",
2020
+ "fewshot_delimiter": "\n\n",
2021
+ "num_fewshot": 0,
2022
+ "metric_list": [
2023
+ {
2024
+ "metric": "acc"
2025
+ }
2026
+ ],
2027
+ "output_type": "multiple_choice",
2028
+ "repeats": 1,
2029
+ "should_decontaminate": true,
2030
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2031
+ "metadata": {
2032
+ "version": 1.0
2033
+ }
2034
+ },
2035
+ "blimp_wh_questions_subject_gap_long_distance": {
2036
+ "task": "blimp_wh_questions_subject_gap_long_distance",
2037
+ "group": "blimp",
2038
+ "dataset_path": "blimp",
2039
+ "dataset_name": "wh_questions_subject_gap_long_distance",
2040
+ "validation_split": "train",
2041
+ "doc_to_text": "",
2042
+ "doc_to_target": 0,
2043
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2044
+ "description": "",
2045
+ "target_delimiter": " ",
2046
+ "fewshot_delimiter": "\n\n",
2047
+ "num_fewshot": 0,
2048
+ "metric_list": [
2049
+ {
2050
+ "metric": "acc"
2051
+ }
2052
+ ],
2053
+ "output_type": "multiple_choice",
2054
+ "repeats": 1,
2055
+ "should_decontaminate": true,
2056
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2057
+ "metadata": {
2058
+ "version": 1.0
2059
+ }
2060
+ },
2061
+ "blimp_wh_vs_that_no_gap": {
2062
+ "task": "blimp_wh_vs_that_no_gap",
2063
+ "group": "blimp",
2064
+ "dataset_path": "blimp",
2065
+ "dataset_name": "wh_vs_that_no_gap",
2066
+ "validation_split": "train",
2067
+ "doc_to_text": "",
2068
+ "doc_to_target": 0,
2069
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2070
+ "description": "",
2071
+ "target_delimiter": " ",
2072
+ "fewshot_delimiter": "\n\n",
2073
+ "num_fewshot": 0,
2074
+ "metric_list": [
2075
+ {
2076
+ "metric": "acc"
2077
+ }
2078
+ ],
2079
+ "output_type": "multiple_choice",
2080
+ "repeats": 1,
2081
+ "should_decontaminate": true,
2082
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2083
+ "metadata": {
2084
+ "version": 1.0
2085
+ }
2086
+ },
2087
+ "blimp_wh_vs_that_no_gap_long_distance": {
2088
+ "task": "blimp_wh_vs_that_no_gap_long_distance",
2089
+ "group": "blimp",
2090
+ "dataset_path": "blimp",
2091
+ "dataset_name": "wh_vs_that_no_gap_long_distance",
2092
+ "validation_split": "train",
2093
+ "doc_to_text": "",
2094
+ "doc_to_target": 0,
2095
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2096
+ "description": "",
2097
+ "target_delimiter": " ",
2098
+ "fewshot_delimiter": "\n\n",
2099
+ "num_fewshot": 0,
2100
+ "metric_list": [
2101
+ {
2102
+ "metric": "acc"
2103
+ }
2104
+ ],
2105
+ "output_type": "multiple_choice",
2106
+ "repeats": 1,
2107
+ "should_decontaminate": true,
2108
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2109
+ "metadata": {
2110
+ "version": 1.0
2111
+ }
2112
+ },
2113
+ "blimp_wh_vs_that_with_gap": {
2114
+ "task": "blimp_wh_vs_that_with_gap",
2115
+ "group": "blimp",
2116
+ "dataset_path": "blimp",
2117
+ "dataset_name": "wh_vs_that_with_gap",
2118
+ "validation_split": "train",
2119
+ "doc_to_text": "",
2120
+ "doc_to_target": 0,
2121
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2122
+ "description": "",
2123
+ "target_delimiter": " ",
2124
+ "fewshot_delimiter": "\n\n",
2125
+ "num_fewshot": 0,
2126
+ "metric_list": [
2127
+ {
2128
+ "metric": "acc"
2129
+ }
2130
+ ],
2131
+ "output_type": "multiple_choice",
2132
+ "repeats": 1,
2133
+ "should_decontaminate": true,
2134
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2135
+ "metadata": {
2136
+ "version": 1.0
2137
+ }
2138
+ },
2139
+ "blimp_wh_vs_that_with_gap_long_distance": {
2140
+ "task": "blimp_wh_vs_that_with_gap_long_distance",
2141
+ "group": "blimp",
2142
+ "dataset_path": "blimp",
2143
+ "dataset_name": "wh_vs_that_with_gap_long_distance",
2144
+ "validation_split": "train",
2145
+ "doc_to_text": "",
2146
+ "doc_to_target": 0,
2147
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2148
+ "description": "",
2149
+ "target_delimiter": " ",
2150
+ "fewshot_delimiter": "\n\n",
2151
+ "num_fewshot": 0,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc"
2155
+ }
2156
+ ],
2157
+ "output_type": "multiple_choice",
2158
+ "repeats": 1,
2159
+ "should_decontaminate": true,
2160
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2161
+ "metadata": {
2162
+ "version": 1.0
2163
+ }
2164
+ }
2165
+ },
2166
+ "versions": {
2167
+ "blimp_adjunct_island": 1.0,
2168
+ "blimp_anaphor_gender_agreement": 1.0,
2169
+ "blimp_anaphor_number_agreement": 1.0,
2170
+ "blimp_animate_subject_passive": 1.0,
2171
+ "blimp_animate_subject_trans": 1.0,
2172
+ "blimp_causative": 1.0,
2173
+ "blimp_complex_NP_island": 1.0,
2174
+ "blimp_coordinate_structure_constraint_complex_left_branch": 1.0,
2175
+ "blimp_coordinate_structure_constraint_object_extraction": 1.0,
2176
+ "blimp_determiner_noun_agreement_1": 1.0,
2177
+ "blimp_determiner_noun_agreement_2": 1.0,
2178
+ "blimp_determiner_noun_agreement_irregular_1": 1.0,
2179
+ "blimp_determiner_noun_agreement_irregular_2": 1.0,
2180
+ "blimp_determiner_noun_agreement_with_adj_2": 1.0,
2181
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": 1.0,
2182
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": 1.0,
2183
+ "blimp_determiner_noun_agreement_with_adjective_1": 1.0,
2184
+ "blimp_distractor_agreement_relational_noun": 1.0,
2185
+ "blimp_distractor_agreement_relative_clause": 1.0,
2186
+ "blimp_drop_argument": 1.0,
2187
+ "blimp_ellipsis_n_bar_1": 1.0,
2188
+ "blimp_ellipsis_n_bar_2": 1.0,
2189
+ "blimp_existential_there_object_raising": 1.0,
2190
+ "blimp_existential_there_quantifiers_1": 1.0,
2191
+ "blimp_existential_there_quantifiers_2": 1.0,
2192
+ "blimp_existential_there_subject_raising": 1.0,
2193
+ "blimp_expletive_it_object_raising": 1.0,
2194
+ "blimp_inchoative": 1.0,
2195
+ "blimp_intransitive": 1.0,
2196
+ "blimp_irregular_past_participle_adjectives": 1.0,
2197
+ "blimp_irregular_past_participle_verbs": 1.0,
2198
+ "blimp_irregular_plural_subject_verb_agreement_1": 1.0,
2199
+ "blimp_irregular_plural_subject_verb_agreement_2": 1.0,
2200
+ "blimp_left_branch_island_echo_question": 1.0,
2201
+ "blimp_left_branch_island_simple_question": 1.0,
2202
+ "blimp_matrix_question_npi_licensor_present": 1.0,
2203
+ "blimp_npi_present_1": 1.0,
2204
+ "blimp_npi_present_2": 1.0,
2205
+ "blimp_only_npi_licensor_present": 1.0,
2206
+ "blimp_only_npi_scope": 1.0,
2207
+ "blimp_passive_1": 1.0,
2208
+ "blimp_passive_2": 1.0,
2209
+ "blimp_principle_A_c_command": 1.0,
2210
+ "blimp_principle_A_case_1": 1.0,
2211
+ "blimp_principle_A_case_2": 1.0,
2212
+ "blimp_principle_A_domain_1": 1.0,
2213
+ "blimp_principle_A_domain_2": 1.0,
2214
+ "blimp_principle_A_domain_3": 1.0,
2215
+ "blimp_principle_A_reconstruction": 1.0,
2216
+ "blimp_regular_plural_subject_verb_agreement_1": 1.0,
2217
+ "blimp_regular_plural_subject_verb_agreement_2": 1.0,
2218
+ "blimp_sentential_negation_npi_licensor_present": 1.0,
2219
+ "blimp_sentential_negation_npi_scope": 1.0,
2220
+ "blimp_sentential_subject_island": 1.0,
2221
+ "blimp_superlative_quantifiers_1": 1.0,
2222
+ "blimp_superlative_quantifiers_2": 1.0,
2223
+ "blimp_tough_vs_raising_1": 1.0,
2224
+ "blimp_tough_vs_raising_2": 1.0,
2225
+ "blimp_transitive": 1.0,
2226
+ "blimp_wh_island": 1.0,
2227
+ "blimp_wh_questions_object_gap": 1.0,
2228
+ "blimp_wh_questions_subject_gap": 1.0,
2229
+ "blimp_wh_questions_subject_gap_long_distance": 1.0,
2230
+ "blimp_wh_vs_that_no_gap": 1.0,
2231
+ "blimp_wh_vs_that_no_gap_long_distance": 1.0,
2232
+ "blimp_wh_vs_that_with_gap": 1.0,
2233
+ "blimp_wh_vs_that_with_gap_long_distance": 1.0
2234
+ },
2235
+ "n-shot": {
2236
+ "blimp": 0,
2237
+ "blimp_adjunct_island": 0,
2238
+ "blimp_anaphor_gender_agreement": 0,
2239
+ "blimp_anaphor_number_agreement": 0,
2240
+ "blimp_animate_subject_passive": 0,
2241
+ "blimp_animate_subject_trans": 0,
2242
+ "blimp_causative": 0,
2243
+ "blimp_complex_NP_island": 0,
2244
+ "blimp_coordinate_structure_constraint_complex_left_branch": 0,
2245
+ "blimp_coordinate_structure_constraint_object_extraction": 0,
2246
+ "blimp_determiner_noun_agreement_1": 0,
2247
+ "blimp_determiner_noun_agreement_2": 0,
2248
+ "blimp_determiner_noun_agreement_irregular_1": 0,
2249
+ "blimp_determiner_noun_agreement_irregular_2": 0,
2250
+ "blimp_determiner_noun_agreement_with_adj_2": 0,
2251
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": 0,
2252
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": 0,
2253
+ "blimp_determiner_noun_agreement_with_adjective_1": 0,
2254
+ "blimp_distractor_agreement_relational_noun": 0,
2255
+ "blimp_distractor_agreement_relative_clause": 0,
2256
+ "blimp_drop_argument": 0,
2257
+ "blimp_ellipsis_n_bar_1": 0,
2258
+ "blimp_ellipsis_n_bar_2": 0,
2259
+ "blimp_existential_there_object_raising": 0,
2260
+ "blimp_existential_there_quantifiers_1": 0,
2261
+ "blimp_existential_there_quantifiers_2": 0,
2262
+ "blimp_existential_there_subject_raising": 0,
2263
+ "blimp_expletive_it_object_raising": 0,
2264
+ "blimp_inchoative": 0,
2265
+ "blimp_intransitive": 0,
2266
+ "blimp_irregular_past_participle_adjectives": 0,
2267
+ "blimp_irregular_past_participle_verbs": 0,
2268
+ "blimp_irregular_plural_subject_verb_agreement_1": 0,
2269
+ "blimp_irregular_plural_subject_verb_agreement_2": 0,
2270
+ "blimp_left_branch_island_echo_question": 0,
2271
+ "blimp_left_branch_island_simple_question": 0,
2272
+ "blimp_matrix_question_npi_licensor_present": 0,
2273
+ "blimp_npi_present_1": 0,
2274
+ "blimp_npi_present_2": 0,
2275
+ "blimp_only_npi_licensor_present": 0,
2276
+ "blimp_only_npi_scope": 0,
2277
+ "blimp_passive_1": 0,
2278
+ "blimp_passive_2": 0,
2279
+ "blimp_principle_A_c_command": 0,
2280
+ "blimp_principle_A_case_1": 0,
2281
+ "blimp_principle_A_case_2": 0,
2282
+ "blimp_principle_A_domain_1": 0,
2283
+ "blimp_principle_A_domain_2": 0,
2284
+ "blimp_principle_A_domain_3": 0,
2285
+ "blimp_principle_A_reconstruction": 0,
2286
+ "blimp_regular_plural_subject_verb_agreement_1": 0,
2287
+ "blimp_regular_plural_subject_verb_agreement_2": 0,
2288
+ "blimp_sentential_negation_npi_licensor_present": 0,
2289
+ "blimp_sentential_negation_npi_scope": 0,
2290
+ "blimp_sentential_subject_island": 0,
2291
+ "blimp_superlative_quantifiers_1": 0,
2292
+ "blimp_superlative_quantifiers_2": 0,
2293
+ "blimp_tough_vs_raising_1": 0,
2294
+ "blimp_tough_vs_raising_2": 0,
2295
+ "blimp_transitive": 0,
2296
+ "blimp_wh_island": 0,
2297
+ "blimp_wh_questions_object_gap": 0,
2298
+ "blimp_wh_questions_subject_gap": 0,
2299
+ "blimp_wh_questions_subject_gap_long_distance": 0,
2300
+ "blimp_wh_vs_that_no_gap": 0,
2301
+ "blimp_wh_vs_that_no_gap_long_distance": 0,
2302
+ "blimp_wh_vs_that_with_gap": 0,
2303
+ "blimp_wh_vs_that_with_gap_long_distance": 0
2304
+ },
2305
+ "n-samples": {
2306
+ "blimp_causative": {
2307
+ "original": 1000,
2308
+ "effective": 1000
2309
+ },
2310
+ "blimp_determiner_noun_agreement_irregular_2": {
2311
+ "original": 1000,
2312
+ "effective": 1000
2313
+ },
2314
+ "blimp_passive_1": {
2315
+ "original": 1000,
2316
+ "effective": 1000
2317
+ },
2318
+ "blimp_wh_questions_subject_gap": {
2319
+ "original": 1000,
2320
+ "effective": 1000
2321
+ },
2322
+ "blimp_irregular_plural_subject_verb_agreement_1": {
2323
+ "original": 1000,
2324
+ "effective": 1000
2325
+ },
2326
+ "blimp_wh_vs_that_no_gap": {
2327
+ "original": 1000,
2328
+ "effective": 1000
2329
+ },
2330
+ "blimp_complex_NP_island": {
2331
+ "original": 1000,
2332
+ "effective": 1000
2333
+ },
2334
+ "blimp_principle_A_reconstruction": {
2335
+ "original": 1000,
2336
+ "effective": 1000
2337
+ },
2338
+ "blimp_anaphor_number_agreement": {
2339
+ "original": 1000,
2340
+ "effective": 1000
2341
+ },
2342
+ "blimp_principle_A_domain_3": {
2343
+ "original": 1000,
2344
+ "effective": 1000
2345
+ },
2346
+ "blimp_anaphor_gender_agreement": {
2347
+ "original": 1000,
2348
+ "effective": 1000
2349
+ },
2350
+ "blimp_irregular_past_participle_adjectives": {
2351
+ "original": 1000,
2352
+ "effective": 1000
2353
+ },
2354
+ "blimp_regular_plural_subject_verb_agreement_1": {
2355
+ "original": 1000,
2356
+ "effective": 1000
2357
+ },
2358
+ "blimp_sentential_subject_island": {
2359
+ "original": 1000,
2360
+ "effective": 1000
2361
+ },
2362
+ "blimp_left_branch_island_simple_question": {
2363
+ "original": 1000,
2364
+ "effective": 1000
2365
+ },
2366
+ "blimp_distractor_agreement_relative_clause": {
2367
+ "original": 1000,
2368
+ "effective": 1000
2369
+ },
2370
+ "blimp_irregular_plural_subject_verb_agreement_2": {
2371
+ "original": 1000,
2372
+ "effective": 1000
2373
+ },
2374
+ "blimp_left_branch_island_echo_question": {
2375
+ "original": 1000,
2376
+ "effective": 1000
2377
+ },
2378
+ "blimp_wh_vs_that_no_gap_long_distance": {
2379
+ "original": 1000,
2380
+ "effective": 1000
2381
+ },
2382
+ "blimp_ellipsis_n_bar_1": {
2383
+ "original": 1000,
2384
+ "effective": 1000
2385
+ },
2386
+ "blimp_determiner_noun_agreement_1": {
2387
+ "original": 1000,
2388
+ "effective": 1000
2389
+ },
2390
+ "blimp_superlative_quantifiers_2": {
2391
+ "original": 1000,
2392
+ "effective": 1000
2393
+ },
2394
+ "blimp_ellipsis_n_bar_2": {
2395
+ "original": 1000,
2396
+ "effective": 1000
2397
+ },
2398
+ "blimp_adjunct_island": {
2399
+ "original": 1000,
2400
+ "effective": 1000
2401
+ },
2402
+ "blimp_expletive_it_object_raising": {
2403
+ "original": 1000,
2404
+ "effective": 1000
2405
+ },
2406
+ "blimp_principle_A_c_command": {
2407
+ "original": 1000,
2408
+ "effective": 1000
2409
+ },
2410
+ "blimp_principle_A_domain_1": {
2411
+ "original": 1000,
2412
+ "effective": 1000
2413
+ },
2414
+ "blimp_superlative_quantifiers_1": {
2415
+ "original": 1000,
2416
+ "effective": 1000
2417
+ },
2418
+ "blimp_only_npi_scope": {
2419
+ "original": 1000,
2420
+ "effective": 1000
2421
+ },
2422
+ "blimp_tough_vs_raising_1": {
2423
+ "original": 1000,
2424
+ "effective": 1000
2425
+ },
2426
+ "blimp_transitive": {
2427
+ "original": 1000,
2428
+ "effective": 1000
2429
+ },
2430
+ "blimp_intransitive": {
2431
+ "original": 1000,
2432
+ "effective": 1000
2433
+ },
2434
+ "blimp_wh_questions_object_gap": {
2435
+ "original": 1000,
2436
+ "effective": 1000
2437
+ },
2438
+ "blimp_only_npi_licensor_present": {
2439
+ "original": 1000,
2440
+ "effective": 1000
2441
+ },
2442
+ "blimp_wh_vs_that_with_gap": {
2443
+ "original": 1000,
2444
+ "effective": 1000
2445
+ },
2446
+ "blimp_existential_there_quantifiers_1": {
2447
+ "original": 1000,
2448
+ "effective": 1000
2449
+ },
2450
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
2451
+ "original": 1000,
2452
+ "effective": 1000
2453
+ },
2454
+ "blimp_principle_A_domain_2": {
2455
+ "original": 1000,
2456
+ "effective": 1000
2457
+ },
2458
+ "blimp_determiner_noun_agreement_with_adj_2": {
2459
+ "original": 1000,
2460
+ "effective": 1000
2461
+ },
2462
+ "blimp_wh_island": {
2463
+ "original": 1000,
2464
+ "effective": 1000
2465
+ },
2466
+ "blimp_existential_there_quantifiers_2": {
2467
+ "original": 1000,
2468
+ "effective": 1000
2469
+ },
2470
+ "blimp_existential_there_object_raising": {
2471
+ "original": 1000,
2472
+ "effective": 1000
2473
+ },
2474
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
2475
+ "original": 1000,
2476
+ "effective": 1000
2477
+ },
2478
+ "blimp_npi_present_2": {
2479
+ "original": 1000,
2480
+ "effective": 1000
2481
+ },
2482
+ "blimp_animate_subject_passive": {
2483
+ "original": 1000,
2484
+ "effective": 1000
2485
+ },
2486
+ "blimp_wh_questions_subject_gap_long_distance": {
2487
+ "original": 1000,
2488
+ "effective": 1000
2489
+ },
2490
+ "blimp_existential_there_subject_raising": {
2491
+ "original": 1000,
2492
+ "effective": 1000
2493
+ },
2494
+ "blimp_principle_A_case_2": {
2495
+ "original": 1000,
2496
+ "effective": 1000
2497
+ },
2498
+ "blimp_principle_A_case_1": {
2499
+ "original": 1000,
2500
+ "effective": 1000
2501
+ },
2502
+ "blimp_wh_vs_that_with_gap_long_distance": {
2503
+ "original": 1000,
2504
+ "effective": 1000
2505
+ },
2506
+ "blimp_determiner_noun_agreement_irregular_1": {
2507
+ "original": 1000,
2508
+ "effective": 1000
2509
+ },
2510
+ "blimp_drop_argument": {
2511
+ "original": 1000,
2512
+ "effective": 1000
2513
+ },
2514
+ "blimp_sentential_negation_npi_scope": {
2515
+ "original": 1000,
2516
+ "effective": 1000
2517
+ },
2518
+ "blimp_coordinate_structure_constraint_object_extraction": {
2519
+ "original": 1000,
2520
+ "effective": 1000
2521
+ },
2522
+ "blimp_determiner_noun_agreement_2": {
2523
+ "original": 1000,
2524
+ "effective": 1000
2525
+ },
2526
+ "blimp_irregular_past_participle_verbs": {
2527
+ "original": 1000,
2528
+ "effective": 1000
2529
+ },
2530
+ "blimp_tough_vs_raising_2": {
2531
+ "original": 1000,
2532
+ "effective": 1000
2533
+ },
2534
+ "blimp_sentential_negation_npi_licensor_present": {
2535
+ "original": 1000,
2536
+ "effective": 1000
2537
+ },
2538
+ "blimp_distractor_agreement_relational_noun": {
2539
+ "original": 1000,
2540
+ "effective": 1000
2541
+ },
2542
+ "blimp_passive_2": {
2543
+ "original": 1000,
2544
+ "effective": 1000
2545
+ },
2546
+ "blimp_determiner_noun_agreement_with_adjective_1": {
2547
+ "original": 1000,
2548
+ "effective": 1000
2549
+ },
2550
+ "blimp_inchoative": {
2551
+ "original": 1000,
2552
+ "effective": 1000
2553
+ },
2554
+ "blimp_animate_subject_trans": {
2555
+ "original": 1000,
2556
+ "effective": 1000
2557
+ },
2558
+ "blimp_regular_plural_subject_verb_agreement_2": {
2559
+ "original": 1000,
2560
+ "effective": 1000
2561
+ },
2562
+ "blimp_npi_present_1": {
2563
+ "original": 1000,
2564
+ "effective": 1000
2565
+ },
2566
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
2567
+ "original": 1000,
2568
+ "effective": 1000
2569
+ },
2570
+ "blimp_matrix_question_npi_licensor_present": {
2571
+ "original": 1000,
2572
+ "effective": 1000
2573
+ }
2574
+ },
2575
+ "config": {
2576
+ "model": "hf",
2577
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step0",
2578
+ "model_num_parameters": 14067712,
2579
+ "model_dtype": "torch.float16",
2580
+ "model_revision": "step0",
2581
+ "model_sha": "322fbe766b2a11f41f91b60d93bb282da3b1d236",
2582
+ "batch_size": "1024",
2583
+ "batch_sizes": [],
2584
+ "device": "cuda",
2585
+ "use_cache": null,
2586
+ "limit": null,
2587
+ "bootstrap_iters": 100000,
2588
+ "gen_kwargs": null,
2589
+ "random_seed": 0,
2590
+ "numpy_seed": 1234,
2591
+ "torch_seed": 1234,
2592
+ "fewshot_seed": 1234
2593
+ },
2594
+ "git_hash": "51a7ca9",
2595
+ "date": 1720210700.1683106,
2596
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.114.2.el7.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.54.15\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 5000.11\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
2597
+ "transformers_version": "4.40.2",
2598
+ "upper_git_hash": null,
2599
+ "task_hashes": {},
2600
+ "model_source": "hf",
2601
+ "model_name": "EleutherAI/pythia-14m-seed1",
2602
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
2603
+ "start_time": 6716623.672507783,
2604
+ "end_time": 6717037.494629572,
2605
+ "total_evaluation_time_seconds": "413.8221217887476"
2606
+ }
pythia-14m-seed1/step0/EleutherAI__pythia-14m-seed1/results_2024-07-11T13-45-02.042989.json.bak ADDED
@@ -0,0 +1,2606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "blimp": {
4
+ "acc,none": 0.5176865671641792,
5
+ "acc_stderr,none": 0.0018818593441844549,
6
+ "alias": "blimp"
7
+ },
8
+ "blimp_adjunct_island": {
9
+ "acc,none": 0.561,
10
+ "acc_stderr,none": 0.015701131345400736,
11
+ "alias": " - blimp_adjunct_island"
12
+ },
13
+ "blimp_anaphor_gender_agreement": {
14
+ "acc,none": 0.559,
15
+ "acc_stderr,none": 0.015708779894242766,
16
+ "alias": " - blimp_anaphor_gender_agreement"
17
+ },
18
+ "blimp_anaphor_number_agreement": {
19
+ "acc,none": 0.541,
20
+ "acc_stderr,none": 0.015766025737882314,
21
+ "alias": " - blimp_anaphor_number_agreement"
22
+ },
23
+ "blimp_animate_subject_passive": {
24
+ "acc,none": 0.593,
25
+ "acc_stderr,none": 0.015543249100255474,
26
+ "alias": " - blimp_animate_subject_passive"
27
+ },
28
+ "blimp_animate_subject_trans": {
29
+ "acc,none": 0.813,
30
+ "acc_stderr,none": 0.012336254828074168,
31
+ "alias": " - blimp_animate_subject_trans"
32
+ },
33
+ "blimp_causative": {
34
+ "acc,none": 0.456,
35
+ "acc_stderr,none": 0.01575792855397918,
36
+ "alias": " - blimp_causative"
37
+ },
38
+ "blimp_complex_NP_island": {
39
+ "acc,none": 0.509,
40
+ "acc_stderr,none": 0.0158167369950053,
41
+ "alias": " - blimp_complex_NP_island"
42
+ },
43
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
44
+ "acc,none": 0.547,
45
+ "acc_stderr,none": 0.015749255189977687,
46
+ "alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
47
+ },
48
+ "blimp_coordinate_structure_constraint_object_extraction": {
49
+ "acc,none": 0.531,
50
+ "acc_stderr,none": 0.015788865959538965,
51
+ "alias": " - blimp_coordinate_structure_constraint_object_extraction"
52
+ },
53
+ "blimp_determiner_noun_agreement_1": {
54
+ "acc,none": 0.539,
55
+ "acc_stderr,none": 0.015771104201283047,
56
+ "alias": " - blimp_determiner_noun_agreement_1"
57
+ },
58
+ "blimp_determiner_noun_agreement_2": {
59
+ "acc,none": 0.531,
60
+ "acc_stderr,none": 0.015788865959538965,
61
+ "alias": " - blimp_determiner_noun_agreement_2"
62
+ },
63
+ "blimp_determiner_noun_agreement_irregular_1": {
64
+ "acc,none": 0.498,
65
+ "acc_stderr,none": 0.01581917337430266,
66
+ "alias": " - blimp_determiner_noun_agreement_irregular_1"
67
+ },
68
+ "blimp_determiner_noun_agreement_irregular_2": {
69
+ "acc,none": 0.474,
70
+ "acc_stderr,none": 0.015797897758042797,
71
+ "alias": " - blimp_determiner_noun_agreement_irregular_2"
72
+ },
73
+ "blimp_determiner_noun_agreement_with_adj_2": {
74
+ "acc,none": 0.54,
75
+ "acc_stderr,none": 0.0157685969143944,
76
+ "alias": " - blimp_determiner_noun_agreement_with_adj_2"
77
+ },
78
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
79
+ "acc,none": 0.541,
80
+ "acc_stderr,none": 0.015766025737882314,
81
+ "alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
82
+ },
83
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
84
+ "acc,none": 0.522,
85
+ "acc_stderr,none": 0.01580397942816194,
86
+ "alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
87
+ },
88
+ "blimp_determiner_noun_agreement_with_adjective_1": {
89
+ "acc,none": 0.499,
90
+ "acc_stderr,none": 0.015819268290576817,
91
+ "alias": " - blimp_determiner_noun_agreement_with_adjective_1"
92
+ },
93
+ "blimp_distractor_agreement_relational_noun": {
94
+ "acc,none": 0.478,
95
+ "acc_stderr,none": 0.01580397942816194,
96
+ "alias": " - blimp_distractor_agreement_relational_noun"
97
+ },
98
+ "blimp_distractor_agreement_relative_clause": {
99
+ "acc,none": 0.509,
100
+ "acc_stderr,none": 0.0158167369950053,
101
+ "alias": " - blimp_distractor_agreement_relative_clause"
102
+ },
103
+ "blimp_drop_argument": {
104
+ "acc,none": 0.663,
105
+ "acc_stderr,none": 0.01495508791865346,
106
+ "alias": " - blimp_drop_argument"
107
+ },
108
+ "blimp_ellipsis_n_bar_1": {
109
+ "acc,none": 0.431,
110
+ "acc_stderr,none": 0.01566794448817344,
111
+ "alias": " - blimp_ellipsis_n_bar_1"
112
+ },
113
+ "blimp_ellipsis_n_bar_2": {
114
+ "acc,none": 0.327,
115
+ "acc_stderr,none": 0.014842213153411162,
116
+ "alias": " - blimp_ellipsis_n_bar_2"
117
+ },
118
+ "blimp_existential_there_object_raising": {
119
+ "acc,none": 0.691,
120
+ "acc_stderr,none": 0.014619600977206347,
121
+ "alias": " - blimp_existential_there_object_raising"
122
+ },
123
+ "blimp_existential_there_quantifiers_1": {
124
+ "acc,none": 0.485,
125
+ "acc_stderr,none": 0.01581217964181488,
126
+ "alias": " - blimp_existential_there_quantifiers_1"
127
+ },
128
+ "blimp_existential_there_quantifiers_2": {
129
+ "acc,none": 0.833,
130
+ "acc_stderr,none": 0.011800434324644593,
131
+ "alias": " - blimp_existential_there_quantifiers_2"
132
+ },
133
+ "blimp_existential_there_subject_raising": {
134
+ "acc,none": 0.575,
135
+ "acc_stderr,none": 0.01564032031704017,
136
+ "alias": " - blimp_existential_there_subject_raising"
137
+ },
138
+ "blimp_expletive_it_object_raising": {
139
+ "acc,none": 0.59,
140
+ "acc_stderr,none": 0.015560917136921659,
141
+ "alias": " - blimp_expletive_it_object_raising"
142
+ },
143
+ "blimp_inchoative": {
144
+ "acc,none": 0.423,
145
+ "acc_stderr,none": 0.015630589090476255,
146
+ "alias": " - blimp_inchoative"
147
+ },
148
+ "blimp_intransitive": {
149
+ "acc,none": 0.555,
150
+ "acc_stderr,none": 0.015723301886761007,
151
+ "alias": " - blimp_intransitive"
152
+ },
153
+ "blimp_irregular_past_participle_adjectives": {
154
+ "acc,none": 0.531,
155
+ "acc_stderr,none": 0.015788865959538965,
156
+ "alias": " - blimp_irregular_past_participle_adjectives"
157
+ },
158
+ "blimp_irregular_past_participle_verbs": {
159
+ "acc,none": 0.391,
160
+ "acc_stderr,none": 0.015438826294681775,
161
+ "alias": " - blimp_irregular_past_participle_verbs"
162
+ },
163
+ "blimp_irregular_plural_subject_verb_agreement_1": {
164
+ "acc,none": 0.527,
165
+ "acc_stderr,none": 0.01579621855130273,
166
+ "alias": " - blimp_irregular_plural_subject_verb_agreement_1"
167
+ },
168
+ "blimp_irregular_plural_subject_verb_agreement_2": {
169
+ "acc,none": 0.535,
170
+ "acc_stderr,none": 0.015780495050030086,
171
+ "alias": " - blimp_irregular_plural_subject_verb_agreement_2"
172
+ },
173
+ "blimp_left_branch_island_echo_question": {
174
+ "acc,none": 0.609,
175
+ "acc_stderr,none": 0.015438826294681775,
176
+ "alias": " - blimp_left_branch_island_echo_question"
177
+ },
178
+ "blimp_left_branch_island_simple_question": {
179
+ "acc,none": 0.514,
180
+ "acc_stderr,none": 0.01581309754773093,
181
+ "alias": " - blimp_left_branch_island_simple_question"
182
+ },
183
+ "blimp_matrix_question_npi_licensor_present": {
184
+ "acc,none": 0.596,
185
+ "acc_stderr,none": 0.015524980677122437,
186
+ "alias": " - blimp_matrix_question_npi_licensor_present"
187
+ },
188
+ "blimp_npi_present_1": {
189
+ "acc,none": 0.567,
190
+ "acc_stderr,none": 0.01567663091218125,
191
+ "alias": " - blimp_npi_present_1"
192
+ },
193
+ "blimp_npi_present_2": {
194
+ "acc,none": 0.587,
195
+ "acc_stderr,none": 0.015577986829936457,
196
+ "alias": " - blimp_npi_present_2"
197
+ },
198
+ "blimp_only_npi_licensor_present": {
199
+ "acc,none": 0.209,
200
+ "acc_stderr,none": 0.012864077288499339,
201
+ "alias": " - blimp_only_npi_licensor_present"
202
+ },
203
+ "blimp_only_npi_scope": {
204
+ "acc,none": 0.601,
205
+ "acc_stderr,none": 0.015493193313163012,
206
+ "alias": " - blimp_only_npi_scope"
207
+ },
208
+ "blimp_passive_1": {
209
+ "acc,none": 0.637,
210
+ "acc_stderr,none": 0.01521389044467136,
211
+ "alias": " - blimp_passive_1"
212
+ },
213
+ "blimp_passive_2": {
214
+ "acc,none": 0.651,
215
+ "acc_stderr,none": 0.015080663991563052,
216
+ "alias": " - blimp_passive_2"
217
+ },
218
+ "blimp_principle_A_c_command": {
219
+ "acc,none": 0.629,
220
+ "acc_stderr,none": 0.015283736211823096,
221
+ "alias": " - blimp_principle_A_c_command"
222
+ },
223
+ "blimp_principle_A_case_1": {
224
+ "acc,none": 0.308,
225
+ "acc_stderr,none": 0.01460648312734278,
226
+ "alias": " - blimp_principle_A_case_1"
227
+ },
228
+ "blimp_principle_A_case_2": {
229
+ "acc,none": 0.509,
230
+ "acc_stderr,none": 0.0158167369950053,
231
+ "alias": " - blimp_principle_A_case_2"
232
+ },
233
+ "blimp_principle_A_domain_1": {
234
+ "acc,none": 0.605,
235
+ "acc_stderr,none": 0.015466551464829328,
236
+ "alias": " - blimp_principle_A_domain_1"
237
+ },
238
+ "blimp_principle_A_domain_2": {
239
+ "acc,none": 0.518,
240
+ "acc_stderr,none": 0.01580904569940659,
241
+ "alias": " - blimp_principle_A_domain_2"
242
+ },
243
+ "blimp_principle_A_domain_3": {
244
+ "acc,none": 0.504,
245
+ "acc_stderr,none": 0.01581879370351084,
246
+ "alias": " - blimp_principle_A_domain_3"
247
+ },
248
+ "blimp_principle_A_reconstruction": {
249
+ "acc,none": 0.494,
250
+ "acc_stderr,none": 0.015818160898606836,
251
+ "alias": " - blimp_principle_A_reconstruction"
252
+ },
253
+ "blimp_regular_plural_subject_verb_agreement_1": {
254
+ "acc,none": 0.441,
255
+ "acc_stderr,none": 0.015708779894242766,
256
+ "alias": " - blimp_regular_plural_subject_verb_agreement_1"
257
+ },
258
+ "blimp_regular_plural_subject_verb_agreement_2": {
259
+ "acc,none": 0.515,
260
+ "acc_stderr,none": 0.01581217964181488,
261
+ "alias": " - blimp_regular_plural_subject_verb_agreement_2"
262
+ },
263
+ "blimp_sentential_negation_npi_licensor_present": {
264
+ "acc,none": 0.657,
265
+ "acc_stderr,none": 0.015019206922357005,
266
+ "alias": " - blimp_sentential_negation_npi_licensor_present"
267
+ },
268
+ "blimp_sentential_negation_npi_scope": {
269
+ "acc,none": 0.398,
270
+ "acc_stderr,none": 0.015486634102859016,
271
+ "alias": " - blimp_sentential_negation_npi_scope"
272
+ },
273
+ "blimp_sentential_subject_island": {
274
+ "acc,none": 0.511,
275
+ "acc_stderr,none": 0.01581547119529257,
276
+ "alias": " - blimp_sentential_subject_island"
277
+ },
278
+ "blimp_superlative_quantifiers_1": {
279
+ "acc,none": 0.349,
280
+ "acc_stderr,none": 0.015080663991563052,
281
+ "alias": " - blimp_superlative_quantifiers_1"
282
+ },
283
+ "blimp_superlative_quantifiers_2": {
284
+ "acc,none": 0.371,
285
+ "acc_stderr,none": 0.015283736211823096,
286
+ "alias": " - blimp_superlative_quantifiers_2"
287
+ },
288
+ "blimp_tough_vs_raising_1": {
289
+ "acc,none": 0.445,
290
+ "acc_stderr,none": 0.015723301886761007,
291
+ "alias": " - blimp_tough_vs_raising_1"
292
+ },
293
+ "blimp_tough_vs_raising_2": {
294
+ "acc,none": 0.566,
295
+ "acc_stderr,none": 0.01568087656637504,
296
+ "alias": " - blimp_tough_vs_raising_2"
297
+ },
298
+ "blimp_transitive": {
299
+ "acc,none": 0.515,
300
+ "acc_stderr,none": 0.01581217964181488,
301
+ "alias": " - blimp_transitive"
302
+ },
303
+ "blimp_wh_island": {
304
+ "acc,none": 0.433,
305
+ "acc_stderr,none": 0.01567663091218125,
306
+ "alias": " - blimp_wh_island"
307
+ },
308
+ "blimp_wh_questions_object_gap": {
309
+ "acc,none": 0.364,
310
+ "acc_stderr,none": 0.015222868840522005,
311
+ "alias": " - blimp_wh_questions_object_gap"
312
+ },
313
+ "blimp_wh_questions_subject_gap": {
314
+ "acc,none": 0.373,
315
+ "acc_stderr,none": 0.015300493622922927,
316
+ "alias": " - blimp_wh_questions_subject_gap"
317
+ },
318
+ "blimp_wh_questions_subject_gap_long_distance": {
319
+ "acc,none": 0.389,
320
+ "acc_stderr,none": 0.015424555647308514,
321
+ "alias": " - blimp_wh_questions_subject_gap_long_distance"
322
+ },
323
+ "blimp_wh_vs_that_no_gap": {
324
+ "acc,none": 0.315,
325
+ "acc_stderr,none": 0.014696631960792617,
326
+ "alias": " - blimp_wh_vs_that_no_gap"
327
+ },
328
+ "blimp_wh_vs_that_no_gap_long_distance": {
329
+ "acc,none": 0.348,
330
+ "acc_stderr,none": 0.015070604603768328,
331
+ "alias": " - blimp_wh_vs_that_no_gap_long_distance"
332
+ },
333
+ "blimp_wh_vs_that_with_gap": {
334
+ "acc,none": 0.688,
335
+ "acc_stderr,none": 0.014658474370509057,
336
+ "alias": " - blimp_wh_vs_that_with_gap"
337
+ },
338
+ "blimp_wh_vs_that_with_gap_long_distance": {
339
+ "acc,none": 0.671,
340
+ "acc_stderr,none": 0.014865395385928355,
341
+ "alias": " - blimp_wh_vs_that_with_gap_long_distance"
342
+ }
343
+ },
344
+ "groups": {
345
+ "blimp": {
346
+ "acc,none": 0.5176865671641792,
347
+ "acc_stderr,none": 0.0018818593441844549,
348
+ "alias": "blimp"
349
+ }
350
+ },
351
+ "group_subtasks": {
352
+ "blimp": [
353
+ "blimp_causative",
354
+ "blimp_determiner_noun_agreement_irregular_2",
355
+ "blimp_passive_1",
356
+ "blimp_wh_questions_subject_gap",
357
+ "blimp_irregular_plural_subject_verb_agreement_1",
358
+ "blimp_wh_vs_that_no_gap",
359
+ "blimp_complex_NP_island",
360
+ "blimp_principle_A_reconstruction",
361
+ "blimp_anaphor_number_agreement",
362
+ "blimp_principle_A_domain_3",
363
+ "blimp_anaphor_gender_agreement",
364
+ "blimp_irregular_past_participle_adjectives",
365
+ "blimp_regular_plural_subject_verb_agreement_1",
366
+ "blimp_sentential_subject_island",
367
+ "blimp_left_branch_island_simple_question",
368
+ "blimp_distractor_agreement_relative_clause",
369
+ "blimp_irregular_plural_subject_verb_agreement_2",
370
+ "blimp_left_branch_island_echo_question",
371
+ "blimp_wh_vs_that_no_gap_long_distance",
372
+ "blimp_ellipsis_n_bar_1",
373
+ "blimp_determiner_noun_agreement_1",
374
+ "blimp_superlative_quantifiers_2",
375
+ "blimp_ellipsis_n_bar_2",
376
+ "blimp_adjunct_island",
377
+ "blimp_expletive_it_object_raising",
378
+ "blimp_principle_A_c_command",
379
+ "blimp_principle_A_domain_1",
380
+ "blimp_superlative_quantifiers_1",
381
+ "blimp_only_npi_scope",
382
+ "blimp_tough_vs_raising_1",
383
+ "blimp_transitive",
384
+ "blimp_intransitive",
385
+ "blimp_wh_questions_object_gap",
386
+ "blimp_only_npi_licensor_present",
387
+ "blimp_wh_vs_that_with_gap",
388
+ "blimp_existential_there_quantifiers_1",
389
+ "blimp_coordinate_structure_constraint_complex_left_branch",
390
+ "blimp_principle_A_domain_2",
391
+ "blimp_determiner_noun_agreement_with_adj_2",
392
+ "blimp_wh_island",
393
+ "blimp_existential_there_quantifiers_2",
394
+ "blimp_existential_there_object_raising",
395
+ "blimp_determiner_noun_agreement_with_adj_irregular_1",
396
+ "blimp_npi_present_2",
397
+ "blimp_animate_subject_passive",
398
+ "blimp_wh_questions_subject_gap_long_distance",
399
+ "blimp_existential_there_subject_raising",
400
+ "blimp_principle_A_case_2",
401
+ "blimp_principle_A_case_1",
402
+ "blimp_wh_vs_that_with_gap_long_distance",
403
+ "blimp_determiner_noun_agreement_irregular_1",
404
+ "blimp_drop_argument",
405
+ "blimp_sentential_negation_npi_scope",
406
+ "blimp_coordinate_structure_constraint_object_extraction",
407
+ "blimp_determiner_noun_agreement_2",
408
+ "blimp_irregular_past_participle_verbs",
409
+ "blimp_tough_vs_raising_2",
410
+ "blimp_sentential_negation_npi_licensor_present",
411
+ "blimp_distractor_agreement_relational_noun",
412
+ "blimp_passive_2",
413
+ "blimp_determiner_noun_agreement_with_adjective_1",
414
+ "blimp_inchoative",
415
+ "blimp_animate_subject_trans",
416
+ "blimp_regular_plural_subject_verb_agreement_2",
417
+ "blimp_npi_present_1",
418
+ "blimp_determiner_noun_agreement_with_adj_irregular_2",
419
+ "blimp_matrix_question_npi_licensor_present"
420
+ ]
421
+ },
422
+ "configs": {
423
+ "blimp_adjunct_island": {
424
+ "task": "blimp_adjunct_island",
425
+ "group": "blimp",
426
+ "dataset_path": "blimp",
427
+ "dataset_name": "adjunct_island",
428
+ "validation_split": "train",
429
+ "doc_to_text": "",
430
+ "doc_to_target": 0,
431
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
432
+ "description": "",
433
+ "target_delimiter": " ",
434
+ "fewshot_delimiter": "\n\n",
435
+ "num_fewshot": 0,
436
+ "metric_list": [
437
+ {
438
+ "metric": "acc"
439
+ }
440
+ ],
441
+ "output_type": "multiple_choice",
442
+ "repeats": 1,
443
+ "should_decontaminate": true,
444
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
445
+ "metadata": {
446
+ "version": 1.0
447
+ }
448
+ },
449
+ "blimp_anaphor_gender_agreement": {
450
+ "task": "blimp_anaphor_gender_agreement",
451
+ "group": "blimp",
452
+ "dataset_path": "blimp",
453
+ "dataset_name": "anaphor_gender_agreement",
454
+ "validation_split": "train",
455
+ "doc_to_text": "",
456
+ "doc_to_target": 0,
457
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
458
+ "description": "",
459
+ "target_delimiter": " ",
460
+ "fewshot_delimiter": "\n\n",
461
+ "num_fewshot": 0,
462
+ "metric_list": [
463
+ {
464
+ "metric": "acc"
465
+ }
466
+ ],
467
+ "output_type": "multiple_choice",
468
+ "repeats": 1,
469
+ "should_decontaminate": true,
470
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
471
+ "metadata": {
472
+ "version": 1.0
473
+ }
474
+ },
475
+ "blimp_anaphor_number_agreement": {
476
+ "task": "blimp_anaphor_number_agreement",
477
+ "group": "blimp",
478
+ "dataset_path": "blimp",
479
+ "dataset_name": "anaphor_number_agreement",
480
+ "validation_split": "train",
481
+ "doc_to_text": "",
482
+ "doc_to_target": 0,
483
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
484
+ "description": "",
485
+ "target_delimiter": " ",
486
+ "fewshot_delimiter": "\n\n",
487
+ "num_fewshot": 0,
488
+ "metric_list": [
489
+ {
490
+ "metric": "acc"
491
+ }
492
+ ],
493
+ "output_type": "multiple_choice",
494
+ "repeats": 1,
495
+ "should_decontaminate": true,
496
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
497
+ "metadata": {
498
+ "version": 1.0
499
+ }
500
+ },
501
+ "blimp_animate_subject_passive": {
502
+ "task": "blimp_animate_subject_passive",
503
+ "group": "blimp",
504
+ "dataset_path": "blimp",
505
+ "dataset_name": "animate_subject_passive",
506
+ "validation_split": "train",
507
+ "doc_to_text": "",
508
+ "doc_to_target": 0,
509
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
510
+ "description": "",
511
+ "target_delimiter": " ",
512
+ "fewshot_delimiter": "\n\n",
513
+ "num_fewshot": 0,
514
+ "metric_list": [
515
+ {
516
+ "metric": "acc"
517
+ }
518
+ ],
519
+ "output_type": "multiple_choice",
520
+ "repeats": 1,
521
+ "should_decontaminate": true,
522
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
523
+ "metadata": {
524
+ "version": 1.0
525
+ }
526
+ },
527
+ "blimp_animate_subject_trans": {
528
+ "task": "blimp_animate_subject_trans",
529
+ "group": "blimp",
530
+ "dataset_path": "blimp",
531
+ "dataset_name": "animate_subject_trans",
532
+ "validation_split": "train",
533
+ "doc_to_text": "",
534
+ "doc_to_target": 0,
535
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
536
+ "description": "",
537
+ "target_delimiter": " ",
538
+ "fewshot_delimiter": "\n\n",
539
+ "num_fewshot": 0,
540
+ "metric_list": [
541
+ {
542
+ "metric": "acc"
543
+ }
544
+ ],
545
+ "output_type": "multiple_choice",
546
+ "repeats": 1,
547
+ "should_decontaminate": true,
548
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
549
+ "metadata": {
550
+ "version": 1.0
551
+ }
552
+ },
553
+ "blimp_causative": {
554
+ "task": "blimp_causative",
555
+ "group": "blimp",
556
+ "dataset_path": "blimp",
557
+ "dataset_name": "causative",
558
+ "validation_split": "train",
559
+ "doc_to_text": "",
560
+ "doc_to_target": 0,
561
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
562
+ "description": "",
563
+ "target_delimiter": " ",
564
+ "fewshot_delimiter": "\n\n",
565
+ "num_fewshot": 0,
566
+ "metric_list": [
567
+ {
568
+ "metric": "acc"
569
+ }
570
+ ],
571
+ "output_type": "multiple_choice",
572
+ "repeats": 1,
573
+ "should_decontaminate": true,
574
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
575
+ "metadata": {
576
+ "version": 1.0
577
+ }
578
+ },
579
+ "blimp_complex_NP_island": {
580
+ "task": "blimp_complex_NP_island",
581
+ "group": "blimp",
582
+ "dataset_path": "blimp",
583
+ "dataset_name": "complex_NP_island",
584
+ "validation_split": "train",
585
+ "doc_to_text": "",
586
+ "doc_to_target": 0,
587
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
588
+ "description": "",
589
+ "target_delimiter": " ",
590
+ "fewshot_delimiter": "\n\n",
591
+ "num_fewshot": 0,
592
+ "metric_list": [
593
+ {
594
+ "metric": "acc"
595
+ }
596
+ ],
597
+ "output_type": "multiple_choice",
598
+ "repeats": 1,
599
+ "should_decontaminate": true,
600
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
601
+ "metadata": {
602
+ "version": 1.0
603
+ }
604
+ },
605
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
606
+ "task": "blimp_coordinate_structure_constraint_complex_left_branch",
607
+ "group": "blimp",
608
+ "dataset_path": "blimp",
609
+ "dataset_name": "coordinate_structure_constraint_complex_left_branch",
610
+ "validation_split": "train",
611
+ "doc_to_text": "",
612
+ "doc_to_target": 0,
613
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
614
+ "description": "",
615
+ "target_delimiter": " ",
616
+ "fewshot_delimiter": "\n\n",
617
+ "num_fewshot": 0,
618
+ "metric_list": [
619
+ {
620
+ "metric": "acc"
621
+ }
622
+ ],
623
+ "output_type": "multiple_choice",
624
+ "repeats": 1,
625
+ "should_decontaminate": true,
626
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
627
+ "metadata": {
628
+ "version": 1.0
629
+ }
630
+ },
631
+ "blimp_coordinate_structure_constraint_object_extraction": {
632
+ "task": "blimp_coordinate_structure_constraint_object_extraction",
633
+ "group": "blimp",
634
+ "dataset_path": "blimp",
635
+ "dataset_name": "coordinate_structure_constraint_object_extraction",
636
+ "validation_split": "train",
637
+ "doc_to_text": "",
638
+ "doc_to_target": 0,
639
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
640
+ "description": "",
641
+ "target_delimiter": " ",
642
+ "fewshot_delimiter": "\n\n",
643
+ "num_fewshot": 0,
644
+ "metric_list": [
645
+ {
646
+ "metric": "acc"
647
+ }
648
+ ],
649
+ "output_type": "multiple_choice",
650
+ "repeats": 1,
651
+ "should_decontaminate": true,
652
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
653
+ "metadata": {
654
+ "version": 1.0
655
+ }
656
+ },
657
+ "blimp_determiner_noun_agreement_1": {
658
+ "task": "blimp_determiner_noun_agreement_1",
659
+ "group": "blimp",
660
+ "dataset_path": "blimp",
661
+ "dataset_name": "determiner_noun_agreement_1",
662
+ "validation_split": "train",
663
+ "doc_to_text": "",
664
+ "doc_to_target": 0,
665
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
666
+ "description": "",
667
+ "target_delimiter": " ",
668
+ "fewshot_delimiter": "\n\n",
669
+ "num_fewshot": 0,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc"
673
+ }
674
+ ],
675
+ "output_type": "multiple_choice",
676
+ "repeats": 1,
677
+ "should_decontaminate": true,
678
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
679
+ "metadata": {
680
+ "version": 1.0
681
+ }
682
+ },
683
+ "blimp_determiner_noun_agreement_2": {
684
+ "task": "blimp_determiner_noun_agreement_2",
685
+ "group": "blimp",
686
+ "dataset_path": "blimp",
687
+ "dataset_name": "determiner_noun_agreement_2",
688
+ "validation_split": "train",
689
+ "doc_to_text": "",
690
+ "doc_to_target": 0,
691
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
692
+ "description": "",
693
+ "target_delimiter": " ",
694
+ "fewshot_delimiter": "\n\n",
695
+ "num_fewshot": 0,
696
+ "metric_list": [
697
+ {
698
+ "metric": "acc"
699
+ }
700
+ ],
701
+ "output_type": "multiple_choice",
702
+ "repeats": 1,
703
+ "should_decontaminate": true,
704
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
705
+ "metadata": {
706
+ "version": 1.0
707
+ }
708
+ },
709
+ "blimp_determiner_noun_agreement_irregular_1": {
710
+ "task": "blimp_determiner_noun_agreement_irregular_1",
711
+ "group": "blimp",
712
+ "dataset_path": "blimp",
713
+ "dataset_name": "determiner_noun_agreement_irregular_1",
714
+ "validation_split": "train",
715
+ "doc_to_text": "",
716
+ "doc_to_target": 0,
717
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
718
+ "description": "",
719
+ "target_delimiter": " ",
720
+ "fewshot_delimiter": "\n\n",
721
+ "num_fewshot": 0,
722
+ "metric_list": [
723
+ {
724
+ "metric": "acc"
725
+ }
726
+ ],
727
+ "output_type": "multiple_choice",
728
+ "repeats": 1,
729
+ "should_decontaminate": true,
730
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
731
+ "metadata": {
732
+ "version": 1.0
733
+ }
734
+ },
735
+ "blimp_determiner_noun_agreement_irregular_2": {
736
+ "task": "blimp_determiner_noun_agreement_irregular_2",
737
+ "group": "blimp",
738
+ "dataset_path": "blimp",
739
+ "dataset_name": "determiner_noun_agreement_irregular_2",
740
+ "validation_split": "train",
741
+ "doc_to_text": "",
742
+ "doc_to_target": 0,
743
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
744
+ "description": "",
745
+ "target_delimiter": " ",
746
+ "fewshot_delimiter": "\n\n",
747
+ "num_fewshot": 0,
748
+ "metric_list": [
749
+ {
750
+ "metric": "acc"
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": true,
756
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
757
+ "metadata": {
758
+ "version": 1.0
759
+ }
760
+ },
761
+ "blimp_determiner_noun_agreement_with_adj_2": {
762
+ "task": "blimp_determiner_noun_agreement_with_adj_2",
763
+ "group": "blimp",
764
+ "dataset_path": "blimp",
765
+ "dataset_name": "determiner_noun_agreement_with_adj_2",
766
+ "validation_split": "train",
767
+ "doc_to_text": "",
768
+ "doc_to_target": 0,
769
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
770
+ "description": "",
771
+ "target_delimiter": " ",
772
+ "fewshot_delimiter": "\n\n",
773
+ "num_fewshot": 0,
774
+ "metric_list": [
775
+ {
776
+ "metric": "acc"
777
+ }
778
+ ],
779
+ "output_type": "multiple_choice",
780
+ "repeats": 1,
781
+ "should_decontaminate": true,
782
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
783
+ "metadata": {
784
+ "version": 1.0
785
+ }
786
+ },
787
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
788
+ "task": "blimp_determiner_noun_agreement_with_adj_irregular_1",
789
+ "group": "blimp",
790
+ "dataset_path": "blimp",
791
+ "dataset_name": "determiner_noun_agreement_with_adj_irregular_1",
792
+ "validation_split": "train",
793
+ "doc_to_text": "",
794
+ "doc_to_target": 0,
795
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
796
+ "description": "",
797
+ "target_delimiter": " ",
798
+ "fewshot_delimiter": "\n\n",
799
+ "num_fewshot": 0,
800
+ "metric_list": [
801
+ {
802
+ "metric": "acc"
803
+ }
804
+ ],
805
+ "output_type": "multiple_choice",
806
+ "repeats": 1,
807
+ "should_decontaminate": true,
808
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
809
+ "metadata": {
810
+ "version": 1.0
811
+ }
812
+ },
813
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
814
+ "task": "blimp_determiner_noun_agreement_with_adj_irregular_2",
815
+ "group": "blimp",
816
+ "dataset_path": "blimp",
817
+ "dataset_name": "determiner_noun_agreement_with_adj_irregular_2",
818
+ "validation_split": "train",
819
+ "doc_to_text": "",
820
+ "doc_to_target": 0,
821
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
822
+ "description": "",
823
+ "target_delimiter": " ",
824
+ "fewshot_delimiter": "\n\n",
825
+ "num_fewshot": 0,
826
+ "metric_list": [
827
+ {
828
+ "metric": "acc"
829
+ }
830
+ ],
831
+ "output_type": "multiple_choice",
832
+ "repeats": 1,
833
+ "should_decontaminate": true,
834
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
835
+ "metadata": {
836
+ "version": 1.0
837
+ }
838
+ },
839
+ "blimp_determiner_noun_agreement_with_adjective_1": {
840
+ "task": "blimp_determiner_noun_agreement_with_adjective_1",
841
+ "group": "blimp",
842
+ "dataset_path": "blimp",
843
+ "dataset_name": "determiner_noun_agreement_with_adjective_1",
844
+ "validation_split": "train",
845
+ "doc_to_text": "",
846
+ "doc_to_target": 0,
847
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
848
+ "description": "",
849
+ "target_delimiter": " ",
850
+ "fewshot_delimiter": "\n\n",
851
+ "num_fewshot": 0,
852
+ "metric_list": [
853
+ {
854
+ "metric": "acc"
855
+ }
856
+ ],
857
+ "output_type": "multiple_choice",
858
+ "repeats": 1,
859
+ "should_decontaminate": true,
860
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
861
+ "metadata": {
862
+ "version": 1.0
863
+ }
864
+ },
865
+ "blimp_distractor_agreement_relational_noun": {
866
+ "task": "blimp_distractor_agreement_relational_noun",
867
+ "group": "blimp",
868
+ "dataset_path": "blimp",
869
+ "dataset_name": "distractor_agreement_relational_noun",
870
+ "validation_split": "train",
871
+ "doc_to_text": "",
872
+ "doc_to_target": 0,
873
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
874
+ "description": "",
875
+ "target_delimiter": " ",
876
+ "fewshot_delimiter": "\n\n",
877
+ "num_fewshot": 0,
878
+ "metric_list": [
879
+ {
880
+ "metric": "acc"
881
+ }
882
+ ],
883
+ "output_type": "multiple_choice",
884
+ "repeats": 1,
885
+ "should_decontaminate": true,
886
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
887
+ "metadata": {
888
+ "version": 1.0
889
+ }
890
+ },
891
+ "blimp_distractor_agreement_relative_clause": {
892
+ "task": "blimp_distractor_agreement_relative_clause",
893
+ "group": "blimp",
894
+ "dataset_path": "blimp",
895
+ "dataset_name": "distractor_agreement_relative_clause",
896
+ "validation_split": "train",
897
+ "doc_to_text": "",
898
+ "doc_to_target": 0,
899
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
900
+ "description": "",
901
+ "target_delimiter": " ",
902
+ "fewshot_delimiter": "\n\n",
903
+ "num_fewshot": 0,
904
+ "metric_list": [
905
+ {
906
+ "metric": "acc"
907
+ }
908
+ ],
909
+ "output_type": "multiple_choice",
910
+ "repeats": 1,
911
+ "should_decontaminate": true,
912
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
913
+ "metadata": {
914
+ "version": 1.0
915
+ }
916
+ },
917
+ "blimp_drop_argument": {
918
+ "task": "blimp_drop_argument",
919
+ "group": "blimp",
920
+ "dataset_path": "blimp",
921
+ "dataset_name": "drop_argument",
922
+ "validation_split": "train",
923
+ "doc_to_text": "",
924
+ "doc_to_target": 0,
925
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
926
+ "description": "",
927
+ "target_delimiter": " ",
928
+ "fewshot_delimiter": "\n\n",
929
+ "num_fewshot": 0,
930
+ "metric_list": [
931
+ {
932
+ "metric": "acc"
933
+ }
934
+ ],
935
+ "output_type": "multiple_choice",
936
+ "repeats": 1,
937
+ "should_decontaminate": true,
938
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
939
+ "metadata": {
940
+ "version": 1.0
941
+ }
942
+ },
943
+ "blimp_ellipsis_n_bar_1": {
944
+ "task": "blimp_ellipsis_n_bar_1",
945
+ "group": "blimp",
946
+ "dataset_path": "blimp",
947
+ "dataset_name": "ellipsis_n_bar_1",
948
+ "validation_split": "train",
949
+ "doc_to_text": "",
950
+ "doc_to_target": 0,
951
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
952
+ "description": "",
953
+ "target_delimiter": " ",
954
+ "fewshot_delimiter": "\n\n",
955
+ "num_fewshot": 0,
956
+ "metric_list": [
957
+ {
958
+ "metric": "acc"
959
+ }
960
+ ],
961
+ "output_type": "multiple_choice",
962
+ "repeats": 1,
963
+ "should_decontaminate": true,
964
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
965
+ "metadata": {
966
+ "version": 1.0
967
+ }
968
+ },
969
+ "blimp_ellipsis_n_bar_2": {
970
+ "task": "blimp_ellipsis_n_bar_2",
971
+ "group": "blimp",
972
+ "dataset_path": "blimp",
973
+ "dataset_name": "ellipsis_n_bar_2",
974
+ "validation_split": "train",
975
+ "doc_to_text": "",
976
+ "doc_to_target": 0,
977
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
978
+ "description": "",
979
+ "target_delimiter": " ",
980
+ "fewshot_delimiter": "\n\n",
981
+ "num_fewshot": 0,
982
+ "metric_list": [
983
+ {
984
+ "metric": "acc"
985
+ }
986
+ ],
987
+ "output_type": "multiple_choice",
988
+ "repeats": 1,
989
+ "should_decontaminate": true,
990
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
991
+ "metadata": {
992
+ "version": 1.0
993
+ }
994
+ },
995
+ "blimp_existential_there_object_raising": {
996
+ "task": "blimp_existential_there_object_raising",
997
+ "group": "blimp",
998
+ "dataset_path": "blimp",
999
+ "dataset_name": "existential_there_object_raising",
1000
+ "validation_split": "train",
1001
+ "doc_to_text": "",
1002
+ "doc_to_target": 0,
1003
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1004
+ "description": "",
1005
+ "target_delimiter": " ",
1006
+ "fewshot_delimiter": "\n\n",
1007
+ "num_fewshot": 0,
1008
+ "metric_list": [
1009
+ {
1010
+ "metric": "acc"
1011
+ }
1012
+ ],
1013
+ "output_type": "multiple_choice",
1014
+ "repeats": 1,
1015
+ "should_decontaminate": true,
1016
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1017
+ "metadata": {
1018
+ "version": 1.0
1019
+ }
1020
+ },
1021
+ "blimp_existential_there_quantifiers_1": {
1022
+ "task": "blimp_existential_there_quantifiers_1",
1023
+ "group": "blimp",
1024
+ "dataset_path": "blimp",
1025
+ "dataset_name": "existential_there_quantifiers_1",
1026
+ "validation_split": "train",
1027
+ "doc_to_text": "",
1028
+ "doc_to_target": 0,
1029
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1030
+ "description": "",
1031
+ "target_delimiter": " ",
1032
+ "fewshot_delimiter": "\n\n",
1033
+ "num_fewshot": 0,
1034
+ "metric_list": [
1035
+ {
1036
+ "metric": "acc"
1037
+ }
1038
+ ],
1039
+ "output_type": "multiple_choice",
1040
+ "repeats": 1,
1041
+ "should_decontaminate": true,
1042
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1043
+ "metadata": {
1044
+ "version": 1.0
1045
+ }
1046
+ },
1047
+ "blimp_existential_there_quantifiers_2": {
1048
+ "task": "blimp_existential_there_quantifiers_2",
1049
+ "group": "blimp",
1050
+ "dataset_path": "blimp",
1051
+ "dataset_name": "existential_there_quantifiers_2",
1052
+ "validation_split": "train",
1053
+ "doc_to_text": "",
1054
+ "doc_to_target": 0,
1055
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1056
+ "description": "",
1057
+ "target_delimiter": " ",
1058
+ "fewshot_delimiter": "\n\n",
1059
+ "num_fewshot": 0,
1060
+ "metric_list": [
1061
+ {
1062
+ "metric": "acc"
1063
+ }
1064
+ ],
1065
+ "output_type": "multiple_choice",
1066
+ "repeats": 1,
1067
+ "should_decontaminate": true,
1068
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1069
+ "metadata": {
1070
+ "version": 1.0
1071
+ }
1072
+ },
1073
+ "blimp_existential_there_subject_raising": {
1074
+ "task": "blimp_existential_there_subject_raising",
1075
+ "group": "blimp",
1076
+ "dataset_path": "blimp",
1077
+ "dataset_name": "existential_there_subject_raising",
1078
+ "validation_split": "train",
1079
+ "doc_to_text": "",
1080
+ "doc_to_target": 0,
1081
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1082
+ "description": "",
1083
+ "target_delimiter": " ",
1084
+ "fewshot_delimiter": "\n\n",
1085
+ "num_fewshot": 0,
1086
+ "metric_list": [
1087
+ {
1088
+ "metric": "acc"
1089
+ }
1090
+ ],
1091
+ "output_type": "multiple_choice",
1092
+ "repeats": 1,
1093
+ "should_decontaminate": true,
1094
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1095
+ "metadata": {
1096
+ "version": 1.0
1097
+ }
1098
+ },
1099
+ "blimp_expletive_it_object_raising": {
1100
+ "task": "blimp_expletive_it_object_raising",
1101
+ "group": "blimp",
1102
+ "dataset_path": "blimp",
1103
+ "dataset_name": "expletive_it_object_raising",
1104
+ "validation_split": "train",
1105
+ "doc_to_text": "",
1106
+ "doc_to_target": 0,
1107
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1108
+ "description": "",
1109
+ "target_delimiter": " ",
1110
+ "fewshot_delimiter": "\n\n",
1111
+ "num_fewshot": 0,
1112
+ "metric_list": [
1113
+ {
1114
+ "metric": "acc"
1115
+ }
1116
+ ],
1117
+ "output_type": "multiple_choice",
1118
+ "repeats": 1,
1119
+ "should_decontaminate": true,
1120
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1121
+ "metadata": {
1122
+ "version": 1.0
1123
+ }
1124
+ },
1125
+ "blimp_inchoative": {
1126
+ "task": "blimp_inchoative",
1127
+ "group": "blimp",
1128
+ "dataset_path": "blimp",
1129
+ "dataset_name": "inchoative",
1130
+ "validation_split": "train",
1131
+ "doc_to_text": "",
1132
+ "doc_to_target": 0,
1133
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1134
+ "description": "",
1135
+ "target_delimiter": " ",
1136
+ "fewshot_delimiter": "\n\n",
1137
+ "num_fewshot": 0,
1138
+ "metric_list": [
1139
+ {
1140
+ "metric": "acc"
1141
+ }
1142
+ ],
1143
+ "output_type": "multiple_choice",
1144
+ "repeats": 1,
1145
+ "should_decontaminate": true,
1146
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1147
+ "metadata": {
1148
+ "version": 1.0
1149
+ }
1150
+ },
1151
+ "blimp_intransitive": {
1152
+ "task": "blimp_intransitive",
1153
+ "group": "blimp",
1154
+ "dataset_path": "blimp",
1155
+ "dataset_name": "intransitive",
1156
+ "validation_split": "train",
1157
+ "doc_to_text": "",
1158
+ "doc_to_target": 0,
1159
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1160
+ "description": "",
1161
+ "target_delimiter": " ",
1162
+ "fewshot_delimiter": "\n\n",
1163
+ "num_fewshot": 0,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc"
1167
+ }
1168
+ ],
1169
+ "output_type": "multiple_choice",
1170
+ "repeats": 1,
1171
+ "should_decontaminate": true,
1172
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1173
+ "metadata": {
1174
+ "version": 1.0
1175
+ }
1176
+ },
1177
+ "blimp_irregular_past_participle_adjectives": {
1178
+ "task": "blimp_irregular_past_participle_adjectives",
1179
+ "group": "blimp",
1180
+ "dataset_path": "blimp",
1181
+ "dataset_name": "irregular_past_participle_adjectives",
1182
+ "validation_split": "train",
1183
+ "doc_to_text": "",
1184
+ "doc_to_target": 0,
1185
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1186
+ "description": "",
1187
+ "target_delimiter": " ",
1188
+ "fewshot_delimiter": "\n\n",
1189
+ "num_fewshot": 0,
1190
+ "metric_list": [
1191
+ {
1192
+ "metric": "acc"
1193
+ }
1194
+ ],
1195
+ "output_type": "multiple_choice",
1196
+ "repeats": 1,
1197
+ "should_decontaminate": true,
1198
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1199
+ "metadata": {
1200
+ "version": 1.0
1201
+ }
1202
+ },
1203
+ "blimp_irregular_past_participle_verbs": {
1204
+ "task": "blimp_irregular_past_participle_verbs",
1205
+ "group": "blimp",
1206
+ "dataset_path": "blimp",
1207
+ "dataset_name": "irregular_past_participle_verbs",
1208
+ "validation_split": "train",
1209
+ "doc_to_text": "",
1210
+ "doc_to_target": 0,
1211
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1212
+ "description": "",
1213
+ "target_delimiter": " ",
1214
+ "fewshot_delimiter": "\n\n",
1215
+ "num_fewshot": 0,
1216
+ "metric_list": [
1217
+ {
1218
+ "metric": "acc"
1219
+ }
1220
+ ],
1221
+ "output_type": "multiple_choice",
1222
+ "repeats": 1,
1223
+ "should_decontaminate": true,
1224
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1225
+ "metadata": {
1226
+ "version": 1.0
1227
+ }
1228
+ },
1229
+ "blimp_irregular_plural_subject_verb_agreement_1": {
1230
+ "task": "blimp_irregular_plural_subject_verb_agreement_1",
1231
+ "group": "blimp",
1232
+ "dataset_path": "blimp",
1233
+ "dataset_name": "irregular_plural_subject_verb_agreement_1",
1234
+ "validation_split": "train",
1235
+ "doc_to_text": "",
1236
+ "doc_to_target": 0,
1237
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1238
+ "description": "",
1239
+ "target_delimiter": " ",
1240
+ "fewshot_delimiter": "\n\n",
1241
+ "num_fewshot": 0,
1242
+ "metric_list": [
1243
+ {
1244
+ "metric": "acc"
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": true,
1250
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1251
+ "metadata": {
1252
+ "version": 1.0
1253
+ }
1254
+ },
1255
+ "blimp_irregular_plural_subject_verb_agreement_2": {
1256
+ "task": "blimp_irregular_plural_subject_verb_agreement_2",
1257
+ "group": "blimp",
1258
+ "dataset_path": "blimp",
1259
+ "dataset_name": "irregular_plural_subject_verb_agreement_2",
1260
+ "validation_split": "train",
1261
+ "doc_to_text": "",
1262
+ "doc_to_target": 0,
1263
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1264
+ "description": "",
1265
+ "target_delimiter": " ",
1266
+ "fewshot_delimiter": "\n\n",
1267
+ "num_fewshot": 0,
1268
+ "metric_list": [
1269
+ {
1270
+ "metric": "acc"
1271
+ }
1272
+ ],
1273
+ "output_type": "multiple_choice",
1274
+ "repeats": 1,
1275
+ "should_decontaminate": true,
1276
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1277
+ "metadata": {
1278
+ "version": 1.0
1279
+ }
1280
+ },
1281
+ "blimp_left_branch_island_echo_question": {
1282
+ "task": "blimp_left_branch_island_echo_question",
1283
+ "group": "blimp",
1284
+ "dataset_path": "blimp",
1285
+ "dataset_name": "left_branch_island_echo_question",
1286
+ "validation_split": "train",
1287
+ "doc_to_text": "",
1288
+ "doc_to_target": 0,
1289
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1290
+ "description": "",
1291
+ "target_delimiter": " ",
1292
+ "fewshot_delimiter": "\n\n",
1293
+ "num_fewshot": 0,
1294
+ "metric_list": [
1295
+ {
1296
+ "metric": "acc"
1297
+ }
1298
+ ],
1299
+ "output_type": "multiple_choice",
1300
+ "repeats": 1,
1301
+ "should_decontaminate": true,
1302
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1303
+ "metadata": {
1304
+ "version": 1.0
1305
+ }
1306
+ },
1307
+ "blimp_left_branch_island_simple_question": {
1308
+ "task": "blimp_left_branch_island_simple_question",
1309
+ "group": "blimp",
1310
+ "dataset_path": "blimp",
1311
+ "dataset_name": "left_branch_island_simple_question",
1312
+ "validation_split": "train",
1313
+ "doc_to_text": "",
1314
+ "doc_to_target": 0,
1315
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1316
+ "description": "",
1317
+ "target_delimiter": " ",
1318
+ "fewshot_delimiter": "\n\n",
1319
+ "num_fewshot": 0,
1320
+ "metric_list": [
1321
+ {
1322
+ "metric": "acc"
1323
+ }
1324
+ ],
1325
+ "output_type": "multiple_choice",
1326
+ "repeats": 1,
1327
+ "should_decontaminate": true,
1328
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1329
+ "metadata": {
1330
+ "version": 1.0
1331
+ }
1332
+ },
1333
+ "blimp_matrix_question_npi_licensor_present": {
1334
+ "task": "blimp_matrix_question_npi_licensor_present",
1335
+ "group": "blimp",
1336
+ "dataset_path": "blimp",
1337
+ "dataset_name": "matrix_question_npi_licensor_present",
1338
+ "validation_split": "train",
1339
+ "doc_to_text": "",
1340
+ "doc_to_target": 0,
1341
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1342
+ "description": "",
1343
+ "target_delimiter": " ",
1344
+ "fewshot_delimiter": "\n\n",
1345
+ "num_fewshot": 0,
1346
+ "metric_list": [
1347
+ {
1348
+ "metric": "acc"
1349
+ }
1350
+ ],
1351
+ "output_type": "multiple_choice",
1352
+ "repeats": 1,
1353
+ "should_decontaminate": true,
1354
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1355
+ "metadata": {
1356
+ "version": 1.0
1357
+ }
1358
+ },
1359
+ "blimp_npi_present_1": {
1360
+ "task": "blimp_npi_present_1",
1361
+ "group": "blimp",
1362
+ "dataset_path": "blimp",
1363
+ "dataset_name": "npi_present_1",
1364
+ "validation_split": "train",
1365
+ "doc_to_text": "",
1366
+ "doc_to_target": 0,
1367
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1368
+ "description": "",
1369
+ "target_delimiter": " ",
1370
+ "fewshot_delimiter": "\n\n",
1371
+ "num_fewshot": 0,
1372
+ "metric_list": [
1373
+ {
1374
+ "metric": "acc"
1375
+ }
1376
+ ],
1377
+ "output_type": "multiple_choice",
1378
+ "repeats": 1,
1379
+ "should_decontaminate": true,
1380
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1381
+ "metadata": {
1382
+ "version": 1.0
1383
+ }
1384
+ },
1385
+ "blimp_npi_present_2": {
1386
+ "task": "blimp_npi_present_2",
1387
+ "group": "blimp",
1388
+ "dataset_path": "blimp",
1389
+ "dataset_name": "npi_present_2",
1390
+ "validation_split": "train",
1391
+ "doc_to_text": "",
1392
+ "doc_to_target": 0,
1393
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1394
+ "description": "",
1395
+ "target_delimiter": " ",
1396
+ "fewshot_delimiter": "\n\n",
1397
+ "num_fewshot": 0,
1398
+ "metric_list": [
1399
+ {
1400
+ "metric": "acc"
1401
+ }
1402
+ ],
1403
+ "output_type": "multiple_choice",
1404
+ "repeats": 1,
1405
+ "should_decontaminate": true,
1406
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1407
+ "metadata": {
1408
+ "version": 1.0
1409
+ }
1410
+ },
1411
+ "blimp_only_npi_licensor_present": {
1412
+ "task": "blimp_only_npi_licensor_present",
1413
+ "group": "blimp",
1414
+ "dataset_path": "blimp",
1415
+ "dataset_name": "only_npi_licensor_present",
1416
+ "validation_split": "train",
1417
+ "doc_to_text": "",
1418
+ "doc_to_target": 0,
1419
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1420
+ "description": "",
1421
+ "target_delimiter": " ",
1422
+ "fewshot_delimiter": "\n\n",
1423
+ "num_fewshot": 0,
1424
+ "metric_list": [
1425
+ {
1426
+ "metric": "acc"
1427
+ }
1428
+ ],
1429
+ "output_type": "multiple_choice",
1430
+ "repeats": 1,
1431
+ "should_decontaminate": true,
1432
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1433
+ "metadata": {
1434
+ "version": 1.0
1435
+ }
1436
+ },
1437
+ "blimp_only_npi_scope": {
1438
+ "task": "blimp_only_npi_scope",
1439
+ "group": "blimp",
1440
+ "dataset_path": "blimp",
1441
+ "dataset_name": "only_npi_scope",
1442
+ "validation_split": "train",
1443
+ "doc_to_text": "",
1444
+ "doc_to_target": 0,
1445
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1446
+ "description": "",
1447
+ "target_delimiter": " ",
1448
+ "fewshot_delimiter": "\n\n",
1449
+ "num_fewshot": 0,
1450
+ "metric_list": [
1451
+ {
1452
+ "metric": "acc"
1453
+ }
1454
+ ],
1455
+ "output_type": "multiple_choice",
1456
+ "repeats": 1,
1457
+ "should_decontaminate": true,
1458
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1459
+ "metadata": {
1460
+ "version": 1.0
1461
+ }
1462
+ },
1463
+ "blimp_passive_1": {
1464
+ "task": "blimp_passive_1",
1465
+ "group": "blimp",
1466
+ "dataset_path": "blimp",
1467
+ "dataset_name": "passive_1",
1468
+ "validation_split": "train",
1469
+ "doc_to_text": "",
1470
+ "doc_to_target": 0,
1471
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1472
+ "description": "",
1473
+ "target_delimiter": " ",
1474
+ "fewshot_delimiter": "\n\n",
1475
+ "num_fewshot": 0,
1476
+ "metric_list": [
1477
+ {
1478
+ "metric": "acc"
1479
+ }
1480
+ ],
1481
+ "output_type": "multiple_choice",
1482
+ "repeats": 1,
1483
+ "should_decontaminate": true,
1484
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1485
+ "metadata": {
1486
+ "version": 1.0
1487
+ }
1488
+ },
1489
+ "blimp_passive_2": {
1490
+ "task": "blimp_passive_2",
1491
+ "group": "blimp",
1492
+ "dataset_path": "blimp",
1493
+ "dataset_name": "passive_2",
1494
+ "validation_split": "train",
1495
+ "doc_to_text": "",
1496
+ "doc_to_target": 0,
1497
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1498
+ "description": "",
1499
+ "target_delimiter": " ",
1500
+ "fewshot_delimiter": "\n\n",
1501
+ "num_fewshot": 0,
1502
+ "metric_list": [
1503
+ {
1504
+ "metric": "acc"
1505
+ }
1506
+ ],
1507
+ "output_type": "multiple_choice",
1508
+ "repeats": 1,
1509
+ "should_decontaminate": true,
1510
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1511
+ "metadata": {
1512
+ "version": 1.0
1513
+ }
1514
+ },
1515
+ "blimp_principle_A_c_command": {
1516
+ "task": "blimp_principle_A_c_command",
1517
+ "group": "blimp",
1518
+ "dataset_path": "blimp",
1519
+ "dataset_name": "principle_A_c_command",
1520
+ "validation_split": "train",
1521
+ "doc_to_text": "",
1522
+ "doc_to_target": 0,
1523
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1524
+ "description": "",
1525
+ "target_delimiter": " ",
1526
+ "fewshot_delimiter": "\n\n",
1527
+ "num_fewshot": 0,
1528
+ "metric_list": [
1529
+ {
1530
+ "metric": "acc"
1531
+ }
1532
+ ],
1533
+ "output_type": "multiple_choice",
1534
+ "repeats": 1,
1535
+ "should_decontaminate": true,
1536
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1537
+ "metadata": {
1538
+ "version": 1.0
1539
+ }
1540
+ },
1541
+ "blimp_principle_A_case_1": {
1542
+ "task": "blimp_principle_A_case_1",
1543
+ "group": "blimp",
1544
+ "dataset_path": "blimp",
1545
+ "dataset_name": "principle_A_case_1",
1546
+ "validation_split": "train",
1547
+ "doc_to_text": "",
1548
+ "doc_to_target": 0,
1549
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1550
+ "description": "",
1551
+ "target_delimiter": " ",
1552
+ "fewshot_delimiter": "\n\n",
1553
+ "num_fewshot": 0,
1554
+ "metric_list": [
1555
+ {
1556
+ "metric": "acc"
1557
+ }
1558
+ ],
1559
+ "output_type": "multiple_choice",
1560
+ "repeats": 1,
1561
+ "should_decontaminate": true,
1562
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1563
+ "metadata": {
1564
+ "version": 1.0
1565
+ }
1566
+ },
1567
+ "blimp_principle_A_case_2": {
1568
+ "task": "blimp_principle_A_case_2",
1569
+ "group": "blimp",
1570
+ "dataset_path": "blimp",
1571
+ "dataset_name": "principle_A_case_2",
1572
+ "validation_split": "train",
1573
+ "doc_to_text": "",
1574
+ "doc_to_target": 0,
1575
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1576
+ "description": "",
1577
+ "target_delimiter": " ",
1578
+ "fewshot_delimiter": "\n\n",
1579
+ "num_fewshot": 0,
1580
+ "metric_list": [
1581
+ {
1582
+ "metric": "acc"
1583
+ }
1584
+ ],
1585
+ "output_type": "multiple_choice",
1586
+ "repeats": 1,
1587
+ "should_decontaminate": true,
1588
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1589
+ "metadata": {
1590
+ "version": 1.0
1591
+ }
1592
+ },
1593
+ "blimp_principle_A_domain_1": {
1594
+ "task": "blimp_principle_A_domain_1",
1595
+ "group": "blimp",
1596
+ "dataset_path": "blimp",
1597
+ "dataset_name": "principle_A_domain_1",
1598
+ "validation_split": "train",
1599
+ "doc_to_text": "",
1600
+ "doc_to_target": 0,
1601
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1602
+ "description": "",
1603
+ "target_delimiter": " ",
1604
+ "fewshot_delimiter": "\n\n",
1605
+ "num_fewshot": 0,
1606
+ "metric_list": [
1607
+ {
1608
+ "metric": "acc"
1609
+ }
1610
+ ],
1611
+ "output_type": "multiple_choice",
1612
+ "repeats": 1,
1613
+ "should_decontaminate": true,
1614
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1615
+ "metadata": {
1616
+ "version": 1.0
1617
+ }
1618
+ },
1619
+ "blimp_principle_A_domain_2": {
1620
+ "task": "blimp_principle_A_domain_2",
1621
+ "group": "blimp",
1622
+ "dataset_path": "blimp",
1623
+ "dataset_name": "principle_A_domain_2",
1624
+ "validation_split": "train",
1625
+ "doc_to_text": "",
1626
+ "doc_to_target": 0,
1627
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1628
+ "description": "",
1629
+ "target_delimiter": " ",
1630
+ "fewshot_delimiter": "\n\n",
1631
+ "num_fewshot": 0,
1632
+ "metric_list": [
1633
+ {
1634
+ "metric": "acc"
1635
+ }
1636
+ ],
1637
+ "output_type": "multiple_choice",
1638
+ "repeats": 1,
1639
+ "should_decontaminate": true,
1640
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1641
+ "metadata": {
1642
+ "version": 1.0
1643
+ }
1644
+ },
1645
+ "blimp_principle_A_domain_3": {
1646
+ "task": "blimp_principle_A_domain_3",
1647
+ "group": "blimp",
1648
+ "dataset_path": "blimp",
1649
+ "dataset_name": "principle_A_domain_3",
1650
+ "validation_split": "train",
1651
+ "doc_to_text": "",
1652
+ "doc_to_target": 0,
1653
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1654
+ "description": "",
1655
+ "target_delimiter": " ",
1656
+ "fewshot_delimiter": "\n\n",
1657
+ "num_fewshot": 0,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc"
1661
+ }
1662
+ ],
1663
+ "output_type": "multiple_choice",
1664
+ "repeats": 1,
1665
+ "should_decontaminate": true,
1666
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1667
+ "metadata": {
1668
+ "version": 1.0
1669
+ }
1670
+ },
1671
+ "blimp_principle_A_reconstruction": {
1672
+ "task": "blimp_principle_A_reconstruction",
1673
+ "group": "blimp",
1674
+ "dataset_path": "blimp",
1675
+ "dataset_name": "principle_A_reconstruction",
1676
+ "validation_split": "train",
1677
+ "doc_to_text": "",
1678
+ "doc_to_target": 0,
1679
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1680
+ "description": "",
1681
+ "target_delimiter": " ",
1682
+ "fewshot_delimiter": "\n\n",
1683
+ "num_fewshot": 0,
1684
+ "metric_list": [
1685
+ {
1686
+ "metric": "acc"
1687
+ }
1688
+ ],
1689
+ "output_type": "multiple_choice",
1690
+ "repeats": 1,
1691
+ "should_decontaminate": true,
1692
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1693
+ "metadata": {
1694
+ "version": 1.0
1695
+ }
1696
+ },
1697
+ "blimp_regular_plural_subject_verb_agreement_1": {
1698
+ "task": "blimp_regular_plural_subject_verb_agreement_1",
1699
+ "group": "blimp",
1700
+ "dataset_path": "blimp",
1701
+ "dataset_name": "regular_plural_subject_verb_agreement_1",
1702
+ "validation_split": "train",
1703
+ "doc_to_text": "",
1704
+ "doc_to_target": 0,
1705
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1706
+ "description": "",
1707
+ "target_delimiter": " ",
1708
+ "fewshot_delimiter": "\n\n",
1709
+ "num_fewshot": 0,
1710
+ "metric_list": [
1711
+ {
1712
+ "metric": "acc"
1713
+ }
1714
+ ],
1715
+ "output_type": "multiple_choice",
1716
+ "repeats": 1,
1717
+ "should_decontaminate": true,
1718
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1719
+ "metadata": {
1720
+ "version": 1.0
1721
+ }
1722
+ },
1723
+ "blimp_regular_plural_subject_verb_agreement_2": {
1724
+ "task": "blimp_regular_plural_subject_verb_agreement_2",
1725
+ "group": "blimp",
1726
+ "dataset_path": "blimp",
1727
+ "dataset_name": "regular_plural_subject_verb_agreement_2",
1728
+ "validation_split": "train",
1729
+ "doc_to_text": "",
1730
+ "doc_to_target": 0,
1731
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1732
+ "description": "",
1733
+ "target_delimiter": " ",
1734
+ "fewshot_delimiter": "\n\n",
1735
+ "num_fewshot": 0,
1736
+ "metric_list": [
1737
+ {
1738
+ "metric": "acc"
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": true,
1744
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1745
+ "metadata": {
1746
+ "version": 1.0
1747
+ }
1748
+ },
1749
+ "blimp_sentential_negation_npi_licensor_present": {
1750
+ "task": "blimp_sentential_negation_npi_licensor_present",
1751
+ "group": "blimp",
1752
+ "dataset_path": "blimp",
1753
+ "dataset_name": "sentential_negation_npi_licensor_present",
1754
+ "validation_split": "train",
1755
+ "doc_to_text": "",
1756
+ "doc_to_target": 0,
1757
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1758
+ "description": "",
1759
+ "target_delimiter": " ",
1760
+ "fewshot_delimiter": "\n\n",
1761
+ "num_fewshot": 0,
1762
+ "metric_list": [
1763
+ {
1764
+ "metric": "acc"
1765
+ }
1766
+ ],
1767
+ "output_type": "multiple_choice",
1768
+ "repeats": 1,
1769
+ "should_decontaminate": true,
1770
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1771
+ "metadata": {
1772
+ "version": 1.0
1773
+ }
1774
+ },
1775
+ "blimp_sentential_negation_npi_scope": {
1776
+ "task": "blimp_sentential_negation_npi_scope",
1777
+ "group": "blimp",
1778
+ "dataset_path": "blimp",
1779
+ "dataset_name": "sentential_negation_npi_scope",
1780
+ "validation_split": "train",
1781
+ "doc_to_text": "",
1782
+ "doc_to_target": 0,
1783
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1784
+ "description": "",
1785
+ "target_delimiter": " ",
1786
+ "fewshot_delimiter": "\n\n",
1787
+ "num_fewshot": 0,
1788
+ "metric_list": [
1789
+ {
1790
+ "metric": "acc"
1791
+ }
1792
+ ],
1793
+ "output_type": "multiple_choice",
1794
+ "repeats": 1,
1795
+ "should_decontaminate": true,
1796
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1797
+ "metadata": {
1798
+ "version": 1.0
1799
+ }
1800
+ },
1801
+ "blimp_sentential_subject_island": {
1802
+ "task": "blimp_sentential_subject_island",
1803
+ "group": "blimp",
1804
+ "dataset_path": "blimp",
1805
+ "dataset_name": "sentential_subject_island",
1806
+ "validation_split": "train",
1807
+ "doc_to_text": "",
1808
+ "doc_to_target": 0,
1809
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1810
+ "description": "",
1811
+ "target_delimiter": " ",
1812
+ "fewshot_delimiter": "\n\n",
1813
+ "num_fewshot": 0,
1814
+ "metric_list": [
1815
+ {
1816
+ "metric": "acc"
1817
+ }
1818
+ ],
1819
+ "output_type": "multiple_choice",
1820
+ "repeats": 1,
1821
+ "should_decontaminate": true,
1822
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1823
+ "metadata": {
1824
+ "version": 1.0
1825
+ }
1826
+ },
1827
+ "blimp_superlative_quantifiers_1": {
1828
+ "task": "blimp_superlative_quantifiers_1",
1829
+ "group": "blimp",
1830
+ "dataset_path": "blimp",
1831
+ "dataset_name": "superlative_quantifiers_1",
1832
+ "validation_split": "train",
1833
+ "doc_to_text": "",
1834
+ "doc_to_target": 0,
1835
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1836
+ "description": "",
1837
+ "target_delimiter": " ",
1838
+ "fewshot_delimiter": "\n\n",
1839
+ "num_fewshot": 0,
1840
+ "metric_list": [
1841
+ {
1842
+ "metric": "acc"
1843
+ }
1844
+ ],
1845
+ "output_type": "multiple_choice",
1846
+ "repeats": 1,
1847
+ "should_decontaminate": true,
1848
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1849
+ "metadata": {
1850
+ "version": 1.0
1851
+ }
1852
+ },
1853
+ "blimp_superlative_quantifiers_2": {
1854
+ "task": "blimp_superlative_quantifiers_2",
1855
+ "group": "blimp",
1856
+ "dataset_path": "blimp",
1857
+ "dataset_name": "superlative_quantifiers_2",
1858
+ "validation_split": "train",
1859
+ "doc_to_text": "",
1860
+ "doc_to_target": 0,
1861
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1862
+ "description": "",
1863
+ "target_delimiter": " ",
1864
+ "fewshot_delimiter": "\n\n",
1865
+ "num_fewshot": 0,
1866
+ "metric_list": [
1867
+ {
1868
+ "metric": "acc"
1869
+ }
1870
+ ],
1871
+ "output_type": "multiple_choice",
1872
+ "repeats": 1,
1873
+ "should_decontaminate": true,
1874
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1875
+ "metadata": {
1876
+ "version": 1.0
1877
+ }
1878
+ },
1879
+ "blimp_tough_vs_raising_1": {
1880
+ "task": "blimp_tough_vs_raising_1",
1881
+ "group": "blimp",
1882
+ "dataset_path": "blimp",
1883
+ "dataset_name": "tough_vs_raising_1",
1884
+ "validation_split": "train",
1885
+ "doc_to_text": "",
1886
+ "doc_to_target": 0,
1887
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1888
+ "description": "",
1889
+ "target_delimiter": " ",
1890
+ "fewshot_delimiter": "\n\n",
1891
+ "num_fewshot": 0,
1892
+ "metric_list": [
1893
+ {
1894
+ "metric": "acc"
1895
+ }
1896
+ ],
1897
+ "output_type": "multiple_choice",
1898
+ "repeats": 1,
1899
+ "should_decontaminate": true,
1900
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1901
+ "metadata": {
1902
+ "version": 1.0
1903
+ }
1904
+ },
1905
+ "blimp_tough_vs_raising_2": {
1906
+ "task": "blimp_tough_vs_raising_2",
1907
+ "group": "blimp",
1908
+ "dataset_path": "blimp",
1909
+ "dataset_name": "tough_vs_raising_2",
1910
+ "validation_split": "train",
1911
+ "doc_to_text": "",
1912
+ "doc_to_target": 0,
1913
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1914
+ "description": "",
1915
+ "target_delimiter": " ",
1916
+ "fewshot_delimiter": "\n\n",
1917
+ "num_fewshot": 0,
1918
+ "metric_list": [
1919
+ {
1920
+ "metric": "acc"
1921
+ }
1922
+ ],
1923
+ "output_type": "multiple_choice",
1924
+ "repeats": 1,
1925
+ "should_decontaminate": true,
1926
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1927
+ "metadata": {
1928
+ "version": 1.0
1929
+ }
1930
+ },
1931
+ "blimp_transitive": {
1932
+ "task": "blimp_transitive",
1933
+ "group": "blimp",
1934
+ "dataset_path": "blimp",
1935
+ "dataset_name": "transitive",
1936
+ "validation_split": "train",
1937
+ "doc_to_text": "",
1938
+ "doc_to_target": 0,
1939
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1940
+ "description": "",
1941
+ "target_delimiter": " ",
1942
+ "fewshot_delimiter": "\n\n",
1943
+ "num_fewshot": 0,
1944
+ "metric_list": [
1945
+ {
1946
+ "metric": "acc"
1947
+ }
1948
+ ],
1949
+ "output_type": "multiple_choice",
1950
+ "repeats": 1,
1951
+ "should_decontaminate": true,
1952
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1953
+ "metadata": {
1954
+ "version": 1.0
1955
+ }
1956
+ },
1957
+ "blimp_wh_island": {
1958
+ "task": "blimp_wh_island",
1959
+ "group": "blimp",
1960
+ "dataset_path": "blimp",
1961
+ "dataset_name": "wh_island",
1962
+ "validation_split": "train",
1963
+ "doc_to_text": "",
1964
+ "doc_to_target": 0,
1965
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1966
+ "description": "",
1967
+ "target_delimiter": " ",
1968
+ "fewshot_delimiter": "\n\n",
1969
+ "num_fewshot": 0,
1970
+ "metric_list": [
1971
+ {
1972
+ "metric": "acc"
1973
+ }
1974
+ ],
1975
+ "output_type": "multiple_choice",
1976
+ "repeats": 1,
1977
+ "should_decontaminate": true,
1978
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1979
+ "metadata": {
1980
+ "version": 1.0
1981
+ }
1982
+ },
1983
+ "blimp_wh_questions_object_gap": {
1984
+ "task": "blimp_wh_questions_object_gap",
1985
+ "group": "blimp",
1986
+ "dataset_path": "blimp",
1987
+ "dataset_name": "wh_questions_object_gap",
1988
+ "validation_split": "train",
1989
+ "doc_to_text": "",
1990
+ "doc_to_target": 0,
1991
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1992
+ "description": "",
1993
+ "target_delimiter": " ",
1994
+ "fewshot_delimiter": "\n\n",
1995
+ "num_fewshot": 0,
1996
+ "metric_list": [
1997
+ {
1998
+ "metric": "acc"
1999
+ }
2000
+ ],
2001
+ "output_type": "multiple_choice",
2002
+ "repeats": 1,
2003
+ "should_decontaminate": true,
2004
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2005
+ "metadata": {
2006
+ "version": 1.0
2007
+ }
2008
+ },
2009
+ "blimp_wh_questions_subject_gap": {
2010
+ "task": "blimp_wh_questions_subject_gap",
2011
+ "group": "blimp",
2012
+ "dataset_path": "blimp",
2013
+ "dataset_name": "wh_questions_subject_gap",
2014
+ "validation_split": "train",
2015
+ "doc_to_text": "",
2016
+ "doc_to_target": 0,
2017
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2018
+ "description": "",
2019
+ "target_delimiter": " ",
2020
+ "fewshot_delimiter": "\n\n",
2021
+ "num_fewshot": 0,
2022
+ "metric_list": [
2023
+ {
2024
+ "metric": "acc"
2025
+ }
2026
+ ],
2027
+ "output_type": "multiple_choice",
2028
+ "repeats": 1,
2029
+ "should_decontaminate": true,
2030
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2031
+ "metadata": {
2032
+ "version": 1.0
2033
+ }
2034
+ },
2035
+ "blimp_wh_questions_subject_gap_long_distance": {
2036
+ "task": "blimp_wh_questions_subject_gap_long_distance",
2037
+ "group": "blimp",
2038
+ "dataset_path": "blimp",
2039
+ "dataset_name": "wh_questions_subject_gap_long_distance",
2040
+ "validation_split": "train",
2041
+ "doc_to_text": "",
2042
+ "doc_to_target": 0,
2043
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2044
+ "description": "",
2045
+ "target_delimiter": " ",
2046
+ "fewshot_delimiter": "\n\n",
2047
+ "num_fewshot": 0,
2048
+ "metric_list": [
2049
+ {
2050
+ "metric": "acc"
2051
+ }
2052
+ ],
2053
+ "output_type": "multiple_choice",
2054
+ "repeats": 1,
2055
+ "should_decontaminate": true,
2056
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2057
+ "metadata": {
2058
+ "version": 1.0
2059
+ }
2060
+ },
2061
+ "blimp_wh_vs_that_no_gap": {
2062
+ "task": "blimp_wh_vs_that_no_gap",
2063
+ "group": "blimp",
2064
+ "dataset_path": "blimp",
2065
+ "dataset_name": "wh_vs_that_no_gap",
2066
+ "validation_split": "train",
2067
+ "doc_to_text": "",
2068
+ "doc_to_target": 0,
2069
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2070
+ "description": "",
2071
+ "target_delimiter": " ",
2072
+ "fewshot_delimiter": "\n\n",
2073
+ "num_fewshot": 0,
2074
+ "metric_list": [
2075
+ {
2076
+ "metric": "acc"
2077
+ }
2078
+ ],
2079
+ "output_type": "multiple_choice",
2080
+ "repeats": 1,
2081
+ "should_decontaminate": true,
2082
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2083
+ "metadata": {
2084
+ "version": 1.0
2085
+ }
2086
+ },
2087
+ "blimp_wh_vs_that_no_gap_long_distance": {
2088
+ "task": "blimp_wh_vs_that_no_gap_long_distance",
2089
+ "group": "blimp",
2090
+ "dataset_path": "blimp",
2091
+ "dataset_name": "wh_vs_that_no_gap_long_distance",
2092
+ "validation_split": "train",
2093
+ "doc_to_text": "",
2094
+ "doc_to_target": 0,
2095
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2096
+ "description": "",
2097
+ "target_delimiter": " ",
2098
+ "fewshot_delimiter": "\n\n",
2099
+ "num_fewshot": 0,
2100
+ "metric_list": [
2101
+ {
2102
+ "metric": "acc"
2103
+ }
2104
+ ],
2105
+ "output_type": "multiple_choice",
2106
+ "repeats": 1,
2107
+ "should_decontaminate": true,
2108
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2109
+ "metadata": {
2110
+ "version": 1.0
2111
+ }
2112
+ },
2113
+ "blimp_wh_vs_that_with_gap": {
2114
+ "task": "blimp_wh_vs_that_with_gap",
2115
+ "group": "blimp",
2116
+ "dataset_path": "blimp",
2117
+ "dataset_name": "wh_vs_that_with_gap",
2118
+ "validation_split": "train",
2119
+ "doc_to_text": "",
2120
+ "doc_to_target": 0,
2121
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2122
+ "description": "",
2123
+ "target_delimiter": " ",
2124
+ "fewshot_delimiter": "\n\n",
2125
+ "num_fewshot": 0,
2126
+ "metric_list": [
2127
+ {
2128
+ "metric": "acc"
2129
+ }
2130
+ ],
2131
+ "output_type": "multiple_choice",
2132
+ "repeats": 1,
2133
+ "should_decontaminate": true,
2134
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2135
+ "metadata": {
2136
+ "version": 1.0
2137
+ }
2138
+ },
2139
+ "blimp_wh_vs_that_with_gap_long_distance": {
2140
+ "task": "blimp_wh_vs_that_with_gap_long_distance",
2141
+ "group": "blimp",
2142
+ "dataset_path": "blimp",
2143
+ "dataset_name": "wh_vs_that_with_gap_long_distance",
2144
+ "validation_split": "train",
2145
+ "doc_to_text": "",
2146
+ "doc_to_target": 0,
2147
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2148
+ "description": "",
2149
+ "target_delimiter": " ",
2150
+ "fewshot_delimiter": "\n\n",
2151
+ "num_fewshot": 0,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc"
2155
+ }
2156
+ ],
2157
+ "output_type": "multiple_choice",
2158
+ "repeats": 1,
2159
+ "should_decontaminate": true,
2160
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2161
+ "metadata": {
2162
+ "version": 1.0
2163
+ }
2164
+ }
2165
+ },
2166
+ "versions": {
2167
+ "blimp_adjunct_island": 1.0,
2168
+ "blimp_anaphor_gender_agreement": 1.0,
2169
+ "blimp_anaphor_number_agreement": 1.0,
2170
+ "blimp_animate_subject_passive": 1.0,
2171
+ "blimp_animate_subject_trans": 1.0,
2172
+ "blimp_causative": 1.0,
2173
+ "blimp_complex_NP_island": 1.0,
2174
+ "blimp_coordinate_structure_constraint_complex_left_branch": 1.0,
2175
+ "blimp_coordinate_structure_constraint_object_extraction": 1.0,
2176
+ "blimp_determiner_noun_agreement_1": 1.0,
2177
+ "blimp_determiner_noun_agreement_2": 1.0,
2178
+ "blimp_determiner_noun_agreement_irregular_1": 1.0,
2179
+ "blimp_determiner_noun_agreement_irregular_2": 1.0,
2180
+ "blimp_determiner_noun_agreement_with_adj_2": 1.0,
2181
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": 1.0,
2182
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": 1.0,
2183
+ "blimp_determiner_noun_agreement_with_adjective_1": 1.0,
2184
+ "blimp_distractor_agreement_relational_noun": 1.0,
2185
+ "blimp_distractor_agreement_relative_clause": 1.0,
2186
+ "blimp_drop_argument": 1.0,
2187
+ "blimp_ellipsis_n_bar_1": 1.0,
2188
+ "blimp_ellipsis_n_bar_2": 1.0,
2189
+ "blimp_existential_there_object_raising": 1.0,
2190
+ "blimp_existential_there_quantifiers_1": 1.0,
2191
+ "blimp_existential_there_quantifiers_2": 1.0,
2192
+ "blimp_existential_there_subject_raising": 1.0,
2193
+ "blimp_expletive_it_object_raising": 1.0,
2194
+ "blimp_inchoative": 1.0,
2195
+ "blimp_intransitive": 1.0,
2196
+ "blimp_irregular_past_participle_adjectives": 1.0,
2197
+ "blimp_irregular_past_participle_verbs": 1.0,
2198
+ "blimp_irregular_plural_subject_verb_agreement_1": 1.0,
2199
+ "blimp_irregular_plural_subject_verb_agreement_2": 1.0,
2200
+ "blimp_left_branch_island_echo_question": 1.0,
2201
+ "blimp_left_branch_island_simple_question": 1.0,
2202
+ "blimp_matrix_question_npi_licensor_present": 1.0,
2203
+ "blimp_npi_present_1": 1.0,
2204
+ "blimp_npi_present_2": 1.0,
2205
+ "blimp_only_npi_licensor_present": 1.0,
2206
+ "blimp_only_npi_scope": 1.0,
2207
+ "blimp_passive_1": 1.0,
2208
+ "blimp_passive_2": 1.0,
2209
+ "blimp_principle_A_c_command": 1.0,
2210
+ "blimp_principle_A_case_1": 1.0,
2211
+ "blimp_principle_A_case_2": 1.0,
2212
+ "blimp_principle_A_domain_1": 1.0,
2213
+ "blimp_principle_A_domain_2": 1.0,
2214
+ "blimp_principle_A_domain_3": 1.0,
2215
+ "blimp_principle_A_reconstruction": 1.0,
2216
+ "blimp_regular_plural_subject_verb_agreement_1": 1.0,
2217
+ "blimp_regular_plural_subject_verb_agreement_2": 1.0,
2218
+ "blimp_sentential_negation_npi_licensor_present": 1.0,
2219
+ "blimp_sentential_negation_npi_scope": 1.0,
2220
+ "blimp_sentential_subject_island": 1.0,
2221
+ "blimp_superlative_quantifiers_1": 1.0,
2222
+ "blimp_superlative_quantifiers_2": 1.0,
2223
+ "blimp_tough_vs_raising_1": 1.0,
2224
+ "blimp_tough_vs_raising_2": 1.0,
2225
+ "blimp_transitive": 1.0,
2226
+ "blimp_wh_island": 1.0,
2227
+ "blimp_wh_questions_object_gap": 1.0,
2228
+ "blimp_wh_questions_subject_gap": 1.0,
2229
+ "blimp_wh_questions_subject_gap_long_distance": 1.0,
2230
+ "blimp_wh_vs_that_no_gap": 1.0,
2231
+ "blimp_wh_vs_that_no_gap_long_distance": 1.0,
2232
+ "blimp_wh_vs_that_with_gap": 1.0,
2233
+ "blimp_wh_vs_that_with_gap_long_distance": 1.0
2234
+ },
2235
+ "n-shot": {
2236
+ "blimp": 0,
2237
+ "blimp_adjunct_island": 0,
2238
+ "blimp_anaphor_gender_agreement": 0,
2239
+ "blimp_anaphor_number_agreement": 0,
2240
+ "blimp_animate_subject_passive": 0,
2241
+ "blimp_animate_subject_trans": 0,
2242
+ "blimp_causative": 0,
2243
+ "blimp_complex_NP_island": 0,
2244
+ "blimp_coordinate_structure_constraint_complex_left_branch": 0,
2245
+ "blimp_coordinate_structure_constraint_object_extraction": 0,
2246
+ "blimp_determiner_noun_agreement_1": 0,
2247
+ "blimp_determiner_noun_agreement_2": 0,
2248
+ "blimp_determiner_noun_agreement_irregular_1": 0,
2249
+ "blimp_determiner_noun_agreement_irregular_2": 0,
2250
+ "blimp_determiner_noun_agreement_with_adj_2": 0,
2251
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": 0,
2252
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": 0,
2253
+ "blimp_determiner_noun_agreement_with_adjective_1": 0,
2254
+ "blimp_distractor_agreement_relational_noun": 0,
2255
+ "blimp_distractor_agreement_relative_clause": 0,
2256
+ "blimp_drop_argument": 0,
2257
+ "blimp_ellipsis_n_bar_1": 0,
2258
+ "blimp_ellipsis_n_bar_2": 0,
2259
+ "blimp_existential_there_object_raising": 0,
2260
+ "blimp_existential_there_quantifiers_1": 0,
2261
+ "blimp_existential_there_quantifiers_2": 0,
2262
+ "blimp_existential_there_subject_raising": 0,
2263
+ "blimp_expletive_it_object_raising": 0,
2264
+ "blimp_inchoative": 0,
2265
+ "blimp_intransitive": 0,
2266
+ "blimp_irregular_past_participle_adjectives": 0,
2267
+ "blimp_irregular_past_participle_verbs": 0,
2268
+ "blimp_irregular_plural_subject_verb_agreement_1": 0,
2269
+ "blimp_irregular_plural_subject_verb_agreement_2": 0,
2270
+ "blimp_left_branch_island_echo_question": 0,
2271
+ "blimp_left_branch_island_simple_question": 0,
2272
+ "blimp_matrix_question_npi_licensor_present": 0,
2273
+ "blimp_npi_present_1": 0,
2274
+ "blimp_npi_present_2": 0,
2275
+ "blimp_only_npi_licensor_present": 0,
2276
+ "blimp_only_npi_scope": 0,
2277
+ "blimp_passive_1": 0,
2278
+ "blimp_passive_2": 0,
2279
+ "blimp_principle_A_c_command": 0,
2280
+ "blimp_principle_A_case_1": 0,
2281
+ "blimp_principle_A_case_2": 0,
2282
+ "blimp_principle_A_domain_1": 0,
2283
+ "blimp_principle_A_domain_2": 0,
2284
+ "blimp_principle_A_domain_3": 0,
2285
+ "blimp_principle_A_reconstruction": 0,
2286
+ "blimp_regular_plural_subject_verb_agreement_1": 0,
2287
+ "blimp_regular_plural_subject_verb_agreement_2": 0,
2288
+ "blimp_sentential_negation_npi_licensor_present": 0,
2289
+ "blimp_sentential_negation_npi_scope": 0,
2290
+ "blimp_sentential_subject_island": 0,
2291
+ "blimp_superlative_quantifiers_1": 0,
2292
+ "blimp_superlative_quantifiers_2": 0,
2293
+ "blimp_tough_vs_raising_1": 0,
2294
+ "blimp_tough_vs_raising_2": 0,
2295
+ "blimp_transitive": 0,
2296
+ "blimp_wh_island": 0,
2297
+ "blimp_wh_questions_object_gap": 0,
2298
+ "blimp_wh_questions_subject_gap": 0,
2299
+ "blimp_wh_questions_subject_gap_long_distance": 0,
2300
+ "blimp_wh_vs_that_no_gap": 0,
2301
+ "blimp_wh_vs_that_no_gap_long_distance": 0,
2302
+ "blimp_wh_vs_that_with_gap": 0,
2303
+ "blimp_wh_vs_that_with_gap_long_distance": 0
2304
+ },
2305
+ "n-samples": {
2306
+ "blimp_causative": {
2307
+ "original": 1000,
2308
+ "effective": 1000
2309
+ },
2310
+ "blimp_determiner_noun_agreement_irregular_2": {
2311
+ "original": 1000,
2312
+ "effective": 1000
2313
+ },
2314
+ "blimp_passive_1": {
2315
+ "original": 1000,
2316
+ "effective": 1000
2317
+ },
2318
+ "blimp_wh_questions_subject_gap": {
2319
+ "original": 1000,
2320
+ "effective": 1000
2321
+ },
2322
+ "blimp_irregular_plural_subject_verb_agreement_1": {
2323
+ "original": 1000,
2324
+ "effective": 1000
2325
+ },
2326
+ "blimp_wh_vs_that_no_gap": {
2327
+ "original": 1000,
2328
+ "effective": 1000
2329
+ },
2330
+ "blimp_complex_NP_island": {
2331
+ "original": 1000,
2332
+ "effective": 1000
2333
+ },
2334
+ "blimp_principle_A_reconstruction": {
2335
+ "original": 1000,
2336
+ "effective": 1000
2337
+ },
2338
+ "blimp_anaphor_number_agreement": {
2339
+ "original": 1000,
2340
+ "effective": 1000
2341
+ },
2342
+ "blimp_principle_A_domain_3": {
2343
+ "original": 1000,
2344
+ "effective": 1000
2345
+ },
2346
+ "blimp_anaphor_gender_agreement": {
2347
+ "original": 1000,
2348
+ "effective": 1000
2349
+ },
2350
+ "blimp_irregular_past_participle_adjectives": {
2351
+ "original": 1000,
2352
+ "effective": 1000
2353
+ },
2354
+ "blimp_regular_plural_subject_verb_agreement_1": {
2355
+ "original": 1000,
2356
+ "effective": 1000
2357
+ },
2358
+ "blimp_sentential_subject_island": {
2359
+ "original": 1000,
2360
+ "effective": 1000
2361
+ },
2362
+ "blimp_left_branch_island_simple_question": {
2363
+ "original": 1000,
2364
+ "effective": 1000
2365
+ },
2366
+ "blimp_distractor_agreement_relative_clause": {
2367
+ "original": 1000,
2368
+ "effective": 1000
2369
+ },
2370
+ "blimp_irregular_plural_subject_verb_agreement_2": {
2371
+ "original": 1000,
2372
+ "effective": 1000
2373
+ },
2374
+ "blimp_left_branch_island_echo_question": {
2375
+ "original": 1000,
2376
+ "effective": 1000
2377
+ },
2378
+ "blimp_wh_vs_that_no_gap_long_distance": {
2379
+ "original": 1000,
2380
+ "effective": 1000
2381
+ },
2382
+ "blimp_ellipsis_n_bar_1": {
2383
+ "original": 1000,
2384
+ "effective": 1000
2385
+ },
2386
+ "blimp_determiner_noun_agreement_1": {
2387
+ "original": 1000,
2388
+ "effective": 1000
2389
+ },
2390
+ "blimp_superlative_quantifiers_2": {
2391
+ "original": 1000,
2392
+ "effective": 1000
2393
+ },
2394
+ "blimp_ellipsis_n_bar_2": {
2395
+ "original": 1000,
2396
+ "effective": 1000
2397
+ },
2398
+ "blimp_adjunct_island": {
2399
+ "original": 1000,
2400
+ "effective": 1000
2401
+ },
2402
+ "blimp_expletive_it_object_raising": {
2403
+ "original": 1000,
2404
+ "effective": 1000
2405
+ },
2406
+ "blimp_principle_A_c_command": {
2407
+ "original": 1000,
2408
+ "effective": 1000
2409
+ },
2410
+ "blimp_principle_A_domain_1": {
2411
+ "original": 1000,
2412
+ "effective": 1000
2413
+ },
2414
+ "blimp_superlative_quantifiers_1": {
2415
+ "original": 1000,
2416
+ "effective": 1000
2417
+ },
2418
+ "blimp_only_npi_scope": {
2419
+ "original": 1000,
2420
+ "effective": 1000
2421
+ },
2422
+ "blimp_tough_vs_raising_1": {
2423
+ "original": 1000,
2424
+ "effective": 1000
2425
+ },
2426
+ "blimp_transitive": {
2427
+ "original": 1000,
2428
+ "effective": 1000
2429
+ },
2430
+ "blimp_intransitive": {
2431
+ "original": 1000,
2432
+ "effective": 1000
2433
+ },
2434
+ "blimp_wh_questions_object_gap": {
2435
+ "original": 1000,
2436
+ "effective": 1000
2437
+ },
2438
+ "blimp_only_npi_licensor_present": {
2439
+ "original": 1000,
2440
+ "effective": 1000
2441
+ },
2442
+ "blimp_wh_vs_that_with_gap": {
2443
+ "original": 1000,
2444
+ "effective": 1000
2445
+ },
2446
+ "blimp_existential_there_quantifiers_1": {
2447
+ "original": 1000,
2448
+ "effective": 1000
2449
+ },
2450
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
2451
+ "original": 1000,
2452
+ "effective": 1000
2453
+ },
2454
+ "blimp_principle_A_domain_2": {
2455
+ "original": 1000,
2456
+ "effective": 1000
2457
+ },
2458
+ "blimp_determiner_noun_agreement_with_adj_2": {
2459
+ "original": 1000,
2460
+ "effective": 1000
2461
+ },
2462
+ "blimp_wh_island": {
2463
+ "original": 1000,
2464
+ "effective": 1000
2465
+ },
2466
+ "blimp_existential_there_quantifiers_2": {
2467
+ "original": 1000,
2468
+ "effective": 1000
2469
+ },
2470
+ "blimp_existential_there_object_raising": {
2471
+ "original": 1000,
2472
+ "effective": 1000
2473
+ },
2474
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
2475
+ "original": 1000,
2476
+ "effective": 1000
2477
+ },
2478
+ "blimp_npi_present_2": {
2479
+ "original": 1000,
2480
+ "effective": 1000
2481
+ },
2482
+ "blimp_animate_subject_passive": {
2483
+ "original": 1000,
2484
+ "effective": 1000
2485
+ },
2486
+ "blimp_wh_questions_subject_gap_long_distance": {
2487
+ "original": 1000,
2488
+ "effective": 1000
2489
+ },
2490
+ "blimp_existential_there_subject_raising": {
2491
+ "original": 1000,
2492
+ "effective": 1000
2493
+ },
2494
+ "blimp_principle_A_case_2": {
2495
+ "original": 1000,
2496
+ "effective": 1000
2497
+ },
2498
+ "blimp_principle_A_case_1": {
2499
+ "original": 1000,
2500
+ "effective": 1000
2501
+ },
2502
+ "blimp_wh_vs_that_with_gap_long_distance": {
2503
+ "original": 1000,
2504
+ "effective": 1000
2505
+ },
2506
+ "blimp_determiner_noun_agreement_irregular_1": {
2507
+ "original": 1000,
2508
+ "effective": 1000
2509
+ },
2510
+ "blimp_drop_argument": {
2511
+ "original": 1000,
2512
+ "effective": 1000
2513
+ },
2514
+ "blimp_sentential_negation_npi_scope": {
2515
+ "original": 1000,
2516
+ "effective": 1000
2517
+ },
2518
+ "blimp_coordinate_structure_constraint_object_extraction": {
2519
+ "original": 1000,
2520
+ "effective": 1000
2521
+ },
2522
+ "blimp_determiner_noun_agreement_2": {
2523
+ "original": 1000,
2524
+ "effective": 1000
2525
+ },
2526
+ "blimp_irregular_past_participle_verbs": {
2527
+ "original": 1000,
2528
+ "effective": 1000
2529
+ },
2530
+ "blimp_tough_vs_raising_2": {
2531
+ "original": 1000,
2532
+ "effective": 1000
2533
+ },
2534
+ "blimp_sentential_negation_npi_licensor_present": {
2535
+ "original": 1000,
2536
+ "effective": 1000
2537
+ },
2538
+ "blimp_distractor_agreement_relational_noun": {
2539
+ "original": 1000,
2540
+ "effective": 1000
2541
+ },
2542
+ "blimp_passive_2": {
2543
+ "original": 1000,
2544
+ "effective": 1000
2545
+ },
2546
+ "blimp_determiner_noun_agreement_with_adjective_1": {
2547
+ "original": 1000,
2548
+ "effective": 1000
2549
+ },
2550
+ "blimp_inchoative": {
2551
+ "original": 1000,
2552
+ "effective": 1000
2553
+ },
2554
+ "blimp_animate_subject_trans": {
2555
+ "original": 1000,
2556
+ "effective": 1000
2557
+ },
2558
+ "blimp_regular_plural_subject_verb_agreement_2": {
2559
+ "original": 1000,
2560
+ "effective": 1000
2561
+ },
2562
+ "blimp_npi_present_1": {
2563
+ "original": 1000,
2564
+ "effective": 1000
2565
+ },
2566
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
2567
+ "original": 1000,
2568
+ "effective": 1000
2569
+ },
2570
+ "blimp_matrix_question_npi_licensor_present": {
2571
+ "original": 1000,
2572
+ "effective": 1000
2573
+ }
2574
+ },
2575
+ "config": {
2576
+ "model": "hf",
2577
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step0,",
2578
+ "model_num_parameters": 14067712,
2579
+ "model_dtype": "torch.float16",
2580
+ "model_revision": "step0",
2581
+ "model_sha": "322fbe766b2a11f41f91b60d93bb282da3b1d236",
2582
+ "batch_size": "1024",
2583
+ "batch_sizes": [],
2584
+ "device": "cuda",
2585
+ "use_cache": null,
2586
+ "limit": null,
2587
+ "bootstrap_iters": 100000,
2588
+ "gen_kwargs": null,
2589
+ "random_seed": 0,
2590
+ "numpy_seed": 1234,
2591
+ "torch_seed": 1234,
2592
+ "fewshot_seed": 1234
2593
+ },
2594
+ "git_hash": "51a7ca9",
2595
+ "date": 1720730399.9945903,
2596
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA GeForce RTX 2080 Ti\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.91\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
2597
+ "transformers_version": "4.40.2",
2598
+ "upper_git_hash": null,
2599
+ "task_hashes": {},
2600
+ "model_source": "hf",
2601
+ "model_name": "EleutherAI/pythia-14m-seed1",
2602
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
2603
+ "start_time": 695866.155545324,
2604
+ "end_time": 696205.334018645,
2605
+ "total_evaluation_time_seconds": "339.17847332102247"
2606
+ }
pythia-14m-seed1/step0/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-34-26.878314.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 3577630.9945796956,
5
+ "perplexity_stderr,none": 346513.2535490424,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step0,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step0",
457
+ "model_sha": "322fbe766b2a11f41f91b60d93bb282da3b1d236",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723465836.4283125,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 586431.450237646,
480
+ "end_time": 586679.083148604,
481
+ "total_evaluation_time_seconds": "247.6329109580256"
482
+ }
pythia-14m-seed1/step1/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-38-36.798754.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 3577630.9945796956,
5
+ "perplexity_stderr,none": 346513.2535490424,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step1,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step1",
457
+ "model_sha": "391744899a133ba3b62507c3f5620e7844c74165",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723466089.8152428,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 586687.9045798,
480
+ "end_time": 586929.005673856,
481
+ "total_evaluation_time_seconds": "241.10109405603725"
482
+ }
pythia-14m-seed1/step1000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-20-43.708459.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 165785.28222773902,
5
+ "perplexity_stderr,none": 10148.605380657666,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step1000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step1000",
457
+ "model_sha": "e05524a5318c9889faa5114d3e8344527b02f7b3",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723468619.3948085,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 589217.172539005,
480
+ "end_time": 589455.915093445,
481
+ "total_evaluation_time_seconds": "238.74255443993025"
482
+ }
pythia-14m-seed1/step10000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-58-13.399858.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1706.8033769078256,
5
+ "perplexity_stderr,none": 80.98451307839903,
6
+ "acc,none": 0.09392586842615952,
7
+ "acc_stderr,none": 0.004064307401732146,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step10000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step10000",
457
+ "model_sha": "b65054c9d5be56a001a5d7cd7962bbd3b59e390b",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723470865.489443,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 591464.034879045,
480
+ "end_time": 591705.606917171,
481
+ "total_evaluation_time_seconds": "241.57203812606167"
482
+ }
pythia-14m-seed1/step11000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-02-19.860338.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1825.5672976484855,
5
+ "perplexity_stderr,none": 83.87738455478605,
6
+ "acc,none": 0.08519309140306618,
7
+ "acc_stderr,none": 0.0038893674884810277,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step11000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step11000",
457
+ "model_sha": "5462937e3a2bc81a7bd55afba6d97055035f039a",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723471114.3282776,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 591711.589334535,
480
+ "end_time": 591952.06748634,
481
+ "total_evaluation_time_seconds": "240.47815180500038"
482
+ }
pythia-14m-seed1/step12000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-06-26.034288.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1198.372281061769,
5
+ "perplexity_stderr,none": 55.44234602924562,
6
+ "acc,none": 0.11236173103046769,
7
+ "acc_stderr,none": 0.004399864402517477,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step12000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step12000",
457
+ "model_sha": "663bc4740e5033272b4d161b300f407388097236",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723471360.4058855,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 591958.125466808,
480
+ "end_time": 592198.241769348,
481
+ "total_evaluation_time_seconds": "240.11630254006013"
482
+ }
pythia-14m-seed1/step128/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-08-24.350787.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 2161625.6376982476,
5
+ "perplexity_stderr,none": 190829.10781531825,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step128,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step128",
457
+ "model_sha": "fb3be0378c4bc5340bdc57314e644fbc83684898",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723467880.07867,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 588478.458262118,
480
+ "end_time": 588716.556904603,
481
+ "total_evaluation_time_seconds": "238.09864248498343"
482
+ }
pythia-14m-seed1/step13000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-10-32.725397.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1435.0260911008309,
5
+ "perplexity_stderr,none": 66.65710190159811,
6
+ "acc,none": 0.10362895400737435,
7
+ "acc_stderr,none": 0.0042461618103990795,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step13000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step13000",
457
+ "model_sha": "279ac27ac96a15deb320d70e1110506ab7df3bb2",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723471605.7894518,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 592204.226383305,
480
+ "end_time": 592444.932036739,
481
+ "total_evaluation_time_seconds": "240.70565343392082"
482
+ }
pythia-14m-seed1/step14000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-14-36.870500.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1330.1246672723364,
5
+ "perplexity_stderr,none": 61.00034368912197,
6
+ "acc,none": 0.09547836211915389,
7
+ "acc_stderr,none": 0.004094246940967937,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step14000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step14000",
457
+ "model_sha": "0c01936f9f66d64dfb5e0dfd8fe0a381c11315a5",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723471852.879908,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 592451.015213616,
480
+ "end_time": 592689.078115924,
481
+ "total_evaluation_time_seconds": "238.06290230806917"
482
+ }
pythia-14m-seed1/step15000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-18-44.185809.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1300.454681174635,
5
+ "perplexity_stderr,none": 59.02578571631813,
6
+ "acc,none": 0.09023869590529789,
7
+ "acc_stderr,none": 0.003991831568038306,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step15000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step15000",
457
+ "model_sha": "9e47921509ab8f1200a0f21a5fdf6e3e8c32f7b2",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723472096.5834947,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 592694.964826637,
480
+ "end_time": 592936.392382781,
481
+ "total_evaluation_time_seconds": "241.4275561440736"
482
+ }
pythia-14m-seed1/step16/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-55-59.794548.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 3544256.031498556,
5
+ "perplexity_stderr,none": 342456.26642841654,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step16,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step16",
457
+ "model_sha": "3d5ad2743d7f32872bab8a63a3214757f5bafcac",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723467133.2361438,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 587726.05894772,
480
+ "end_time": 587972.00096739,
481
+ "total_evaluation_time_seconds": "245.94201967003755"
482
+ }
pythia-14m-seed1/step16000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-22-52.656419.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1508.4200129111887,
5
+ "perplexity_stderr,none": 68.33885135504194,
6
+ "acc,none": 0.08771589365418203,
7
+ "acc_stderr,none": 0.003941089280335152,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step16000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step16000",
457
+ "model_sha": "f27f8309a5c14737f752871df8a3eaa59a3be527",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723472347.0784972,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 592942.377583877,
480
+ "end_time": 593184.863495992,
481
+ "total_evaluation_time_seconds": "242.48591211508028"
482
+ }
pythia-14m-seed1/step17000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-27-02.544847.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1362.146262073091,
5
+ "perplexity_stderr,none": 64.59719270698977,
6
+ "acc,none": 0.09800116437026975,
7
+ "acc_stderr,none": 0.004142196325892838,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step17000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step17000",
457
+ "model_sha": "75f0e0ae07beaad37bae461145a4dbcc86e24692",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723472595.4651008,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 593190.810466927,
480
+ "end_time": 593434.751863186,
481
+ "total_evaluation_time_seconds": "243.94139625900425"
482
+ }
pythia-14m-seed1/step18000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-31-07.685214.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1309.751280652761,
5
+ "perplexity_stderr,none": 59.10103664748906,
6
+ "acc,none": 0.09101494275179507,
7
+ "acc_stderr,none": 0.004007253297246434,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step18000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step18000",
457
+ "model_sha": "d6252bb5c699724f157757503e1c9425fe461a27",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723472842.273937,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 593440.757307799,
480
+ "end_time": 593679.892769297,
481
+ "total_evaluation_time_seconds": "239.13546149805188"
482
+ }
pythia-14m-seed1/step19000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-35-11.859545.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1434.1712206097682,
5
+ "perplexity_stderr,none": 65.33748062140734,
6
+ "acc,none": 0.0894624490588007,
7
+ "acc_stderr,none": 0.003976320615111653,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step19000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step19000",
457
+ "model_sha": "e1ccd24dbac39b0dcdb8f41873d8a46c1026b22b",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723473087.5077255,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 593685.951817292,
480
+ "end_time": 593924.066392196,
481
+ "total_evaluation_time_seconds": "238.11457490397152"
482
+ }
pythia-14m-seed1/step2/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-42-57.791663.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 3577414.0382851013,
5
+ "perplexity_stderr,none": 346490.1079123521,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step2,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step2",
457
+ "model_sha": "a31976a6b857a128a1766c6d762c82422bf86b9a",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723466346.273168,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 586937.061340584,
480
+ "end_time": 587189.964603872,
481
+ "total_evaluation_time_seconds": "252.90326328808442"
482
+ }
pythia-14m-seed1/step2000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-25-00.074484.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 6442.748239816954,
5
+ "perplexity_stderr,none": 263.150168034604,
6
+ "acc,none": 0.02736270133902581,
7
+ "acc_stderr,none": 0.0022728303384483696,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step2000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step2000",
457
+ "model_sha": "e6f18bd42439e84072c51f5ed271662d04d022fc",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723468874.3639698,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 589463.891974103,
480
+ "end_time": 589712.281572735,
481
+ "total_evaluation_time_seconds": "248.38959863199852"
482
+ }
pythia-14m-seed1/step20000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-39-21.895446.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1073.7601222397773,
5
+ "perplexity_stderr,none": 50.180031313469826,
6
+ "acc,none": 0.11274985445371628,
7
+ "acc_stderr,none": 0.00440649323200697,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step20000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step20000",
457
+ "model_sha": "cb17a08d30035e863620ed1bf43660ac61034a00",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723473335.1929982,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 593932.063681181,
480
+ "end_time": 594174.10247367,
481
+ "total_evaluation_time_seconds": "242.0387924889801"
482
+ }
pythia-14m-seed1/step21000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-43-30.344693.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1315.570638563014,
5
+ "perplexity_stderr,none": 63.76335340304932,
6
+ "acc,none": 0.1121676693188434,
7
+ "acc_stderr,none": 0.004396543745902183,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0002,
12
+ "exact_match_stderr,none": 0.0002000252231615614,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.001148105625717566,
42
+ "exact_match_stderr,none": 0.0011481056257175658,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0002,
54
+ "exact_match_stderr,none": 0.0002000252231615614,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step21000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step21000",
457
+ "model_sha": "da14d73a2af1916540f2816a610007bce8ac08c3",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723473583.7465441,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 594181.919595051,
480
+ "end_time": 594422.551075061,
481
+ "total_evaluation_time_seconds": "240.63148000999354"
482
+ }
pythia-14m-seed1/step22000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-47-38.819675.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1342.0689543431947,
5
+ "perplexity_stderr,none": 63.324437816541106,
6
+ "acc,none": 0.09819522608189404,
7
+ "acc_stderr,none": 0.004145849428034497,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step22000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step22000",
457
+ "model_sha": "299464f588430d6de40d815ce2455f356d27dd7b",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723473832.3860588,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 594430.683501378,
480
+ "end_time": 594671.025615628,
481
+ "total_evaluation_time_seconds": "240.34211424994282"
482
+ }
pythia-14m-seed1/step23000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-51-49.064750.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1228.4784723168075,
5
+ "perplexity_stderr,none": 57.71083402349637,
6
+ "acc,none": 0.09974771977488842,
7
+ "acc_stderr,none": 0.004174896142165056,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step23000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step23000",
457
+ "model_sha": "2dc647a26d7124bca217b11f863a9c55244702ea",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723474080.5802898,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 594678.945846232,
480
+ "end_time": 594921.271703578,
481
+ "total_evaluation_time_seconds": "242.32585734594613"
482
+ }
pythia-14m-seed1/step24000/EleutherAI__pythia-14m-seed1/results_2024-08-12T07-55-57.280297.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1248.5827910444752,
5
+ "perplexity_stderr,none": 58.28129910212816,
6
+ "acc,none": 0.09974771977488842,
7
+ "acc_stderr,none": 0.004174896142165056,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step24000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step24000",
457
+ "model_sha": "b4238dafabf80b0d2eec54cd35176af7d856a22b",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723474330.9848897,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 594929.263761255,
480
+ "end_time": 595169.48710706,
481
+ "total_evaluation_time_seconds": "240.22334580507595"
482
+ }
pythia-14m-seed1/step25000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-00-23.273296.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1078.1037198020288,
5
+ "perplexity_stderr,none": 50.29663801073303,
6
+ "acc,none": 0.11080923733747332,
7
+ "acc_stderr,none": 0.004373181748568138,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step25000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step25000",
457
+ "model_sha": "",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723474586.227733,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 595177.544644202,
480
+ "end_time": 595435.480625855,
481
+ "total_evaluation_time_seconds": "257.93598165304866"
482
+ }
pythia-14m-seed1/step256/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-12-30.518046.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1557200.1507235158,
5
+ "perplexity_stderr,none": 120989.57362868116,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step256,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step256",
457
+ "model_sha": "cd1a420123c542aa6480a57f5fef34e1c2503505",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723468127.1369855,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 588724.930293508,
480
+ "end_time": 588962.725103075,
481
+ "total_evaluation_time_seconds": "237.79480956704356"
482
+ }
pythia-14m-seed1/step26000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-04-43.508436.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1143.0351018704325,
5
+ "perplexity_stderr,none": 51.58348486426997,
6
+ "acc,none": 0.09703085581214826,
7
+ "acc_stderr,none": 0.004123855686199016,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step26000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step26000",
457
+ "model_sha": "4b9cba39f4a8a56c34ecd6ca25e24b3648b821fb",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723474855.5270512,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 595453.977653388,
480
+ "end_time": 595695.715247744,
481
+ "total_evaluation_time_seconds": "241.73759435594548"
482
+ }
pythia-14m-seed1/step27000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-08-54.479591.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1390.8543046931316,
5
+ "perplexity_stderr,none": 64.72963625566457,
6
+ "acc,none": 0.09004463419367359,
7
+ "acc_stderr,none": 0.003987962235095557,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step27000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step27000",
457
+ "model_sha": "ced4ebf986f79f1cc6e2e70f4307cfd7a2bc3b21",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723475105.3772542,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 595703.674144688,
480
+ "end_time": 595946.686523621,
481
+ "total_evaluation_time_seconds": "243.0123789330246"
482
+ }
pythia-14m-seed1/step28000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-13-03.437554.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1183.8921931457348,
5
+ "perplexity_stderr,none": 54.52426093268814,
6
+ "acc,none": 0.10382301571899864,
7
+ "acc_stderr,none": 0.0042496756618570835,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step28000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step28000",
457
+ "model_sha": "76defabe487a6e50961940526ec36a31f4d4b12b",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723475356.888963,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 595954.866322523,
480
+ "end_time": 596195.644005189,
481
+ "total_evaluation_time_seconds": "240.7776826659683"
482
+ }
pythia-14m-seed1/step29000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-17-10.235976.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1156.7714106994533,
5
+ "perplexity_stderr,none": 53.46807045970772,
6
+ "acc,none": 0.10886862022123035,
7
+ "acc_stderr,none": 0.004339446122928107,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0002,
12
+ "exact_match_stderr,none": 0.000200055824375816,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0008424599831508003,
17
+ "exact_match_stderr,none": 0.0008424599831508003,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0002,
54
+ "exact_match_stderr,none": 0.000200055824375816,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step29000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step29000",
457
+ "model_sha": "66c5b2e40d1100ce83f810ef45daabcd39a2eeba",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723475605.492433,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 596203.750955566,
480
+ "end_time": 596442.443272417,
481
+ "total_evaluation_time_seconds": "238.69231685099658"
482
+ }
pythia-14m-seed1/step3000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-29-07.176670.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 4557.244384016776,
5
+ "perplexity_stderr,none": 195.26897772477193,
6
+ "acc,none": 0.044440131961963905,
7
+ "acc_stderr,none": 0.002870970259614857,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step3000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step3000",
457
+ "model_sha": "9f5304a0d268fe9d3734d81200b6f63880a1ec31",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723469122.1623023,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 589720.380247604,
480
+ "end_time": 589959.382942748,
481
+ "total_evaluation_time_seconds": "239.00269514403772"
482
+ }
pythia-14m-seed1/step30000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-21-21.161950.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1036.9991390279656,
5
+ "perplexity_stderr,none": 47.555329652720005,
6
+ "acc,none": 0.11022705220260043,
7
+ "acc_stderr,none": 0.00436310604106385,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step30000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step30000",
457
+ "model_sha": "06aebfad24380c55705b157ab403b7ef58838edf",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723475852.0692358,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 596450.437902112,
480
+ "end_time": 596693.369136271,
481
+ "total_evaluation_time_seconds": "242.93123415892478"
482
+ }
pythia-14m-seed1/step31000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-25-31.758593.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 942.471093909997,
5
+ "perplexity_stderr,none": 44.99705295268038,
6
+ "acc,none": 0.1280807296720357,
7
+ "acc_stderr,none": 0.004655776323580886,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step31000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step31000",
457
+ "model_sha": "bcede1861a7058b4f117dc76a645556cbe0a4f67",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723476105.5894463,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 596701.277227848,
480
+ "end_time": 596943.965335081,
481
+ "total_evaluation_time_seconds": "242.68810723302886"
482
+ }
pythia-14m-seed1/step32/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-00-10.088125.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 3445742.0970824086,
5
+ "perplexity_stderr,none": 330851.13687632605,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step32,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step32",
457
+ "model_sha": "3dc82a1d607c52fe5bcc1abf2c4e73760a4830bf",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723467381.9868443,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 587980.078017756,
480
+ "end_time": 588222.294495094,
481
+ "total_evaluation_time_seconds": "242.21647733799182"
482
+ }
pythia-14m-seed1/step32000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-29-41.037818.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1160.8794826047688,
5
+ "perplexity_stderr,none": 53.486068122081036,
6
+ "acc,none": 0.10343489229575005,
7
+ "acc_stderr,none": 0.004242643325764933,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0002,
12
+ "exact_match_stderr,none": 0.00020002929690168824,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0011074197120708748,
32
+ "exact_match_stderr,none": 0.0011074197120708748,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0002,
54
+ "exact_match_stderr,none": 0.00020002929690168824,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step32000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step32000",
457
+ "model_sha": "987bb293e032cbd453e11b08655ee1e4ece27250",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723476355.902467,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 596951.993184742,
480
+ "end_time": 597193.243859167,
481
+ "total_evaluation_time_seconds": "241.25067442492582"
482
+ }
pythia-14m-seed1/step33000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-33-49.879234.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1087.5960183425093,
5
+ "perplexity_stderr,none": 49.77281778231847,
6
+ "acc,none": 0.10130021346788279,
7
+ "acc_stderr,none": 0.0042036308668715675,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step33000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step33000",
457
+ "model_sha": "8e748cbf70be374b3f021a5fe9f8e732cc234c93",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723476603.089929,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 597201.285561259,
480
+ "end_time": 597442.086597274,
481
+ "total_evaluation_time_seconds": "240.80103601503652"
482
+ }
pythia-14m-seed1/step34000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-38-10.348821.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1215.6802065018167,
5
+ "perplexity_stderr,none": 53.86288705444756,
6
+ "acc,none": 0.0894624490588007,
7
+ "acc_stderr,none": 0.003976320615111653,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0002,
12
+ "exact_match_stderr,none": 0.000200055824375816,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0008424599831508003,
17
+ "exact_match_stderr,none": 0.0008424599831508003,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0002,
54
+ "exact_match_stderr,none": 0.000200055824375816,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step34000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step34000",
457
+ "model_sha": "cfa1333d98ac8757f8c48150d0a2cf854f104b11",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723476865.3848665,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 597449.948562086,
480
+ "end_time": 597702.555639231,
481
+ "total_evaluation_time_seconds": "252.60707714501768"
482
+ }
pythia-14m-seed1/step35000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-42-22.390553.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1165.123090953555,
5
+ "perplexity_stderr,none": 52.749636148758206,
6
+ "acc,none": 0.10168833689113138,
7
+ "acc_stderr,none": 0.004210766549718483,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step35000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step35000",
457
+ "model_sha": "4d7b052635e59a22f5b68148ef89a6759006aedd",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723477114.2603142,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 597710.476242525,
480
+ "end_time": 597954.596861367,
481
+ "total_evaluation_time_seconds": "244.1206188419601"
482
+ }
pythia-14m-seed1/step36000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-46-35.988527.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1421.4078171093663,
5
+ "perplexity_stderr,none": 62.81381033079262,
6
+ "acc,none": 0.08732777023093344,
7
+ "acc_stderr,none": 0.0039331967952010785,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step36000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step36000",
457
+ "model_sha": "cb765c5781bf9b9eb1f345976a95644a6b691a67",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723477370.389327,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 597962.724644432,
480
+ "end_time": 598208.195816519,
481
+ "total_evaluation_time_seconds": "245.47117208701093"
482
+ }
pythia-14m-seed1/step37000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-50-44.879723.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1217.9659264756383,
5
+ "perplexity_stderr,none": 55.009084692314545,
6
+ "acc,none": 0.09994178148651271,
7
+ "acc_stderr,none": 0.004178504912005431,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step37000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step37000",
457
+ "model_sha": "2a2d8d1029b462415958aff9167bb1d8a152ab5e",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723477617.9696627,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 598216.258751823,
480
+ "end_time": 598457.087299166,
481
+ "total_evaluation_time_seconds": "240.82854734302964"
482
+ }
pythia-14m-seed1/step38000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-54-53.146841.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1111.7325934316825,
5
+ "perplexity_stderr,none": 52.59070829519442,
6
+ "acc,none": 0.10983892877935184,
7
+ "acc_stderr,none": 0.004356367566472683,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step38000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step38000",
457
+ "model_sha": "b6a18fa195cfef08d8f5ec22a754d86db34f62e1",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723477866.4832387,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 598465.033826554,
480
+ "end_time": 598705.353701372,
481
+ "total_evaluation_time_seconds": "240.31987481808756"
482
+ }
pythia-14m-seed1/step39000/EleutherAI__pythia-14m-seed1/results_2024-08-12T08-59-06.449694.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1182.0839232543688,
5
+ "perplexity_stderr,none": 55.96832739868955,
6
+ "acc,none": 0.10459926256549583,
7
+ "acc_stderr,none": 0.004263684964802846,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0002,
12
+ "exact_match_stderr,none": 0.0001999547463471357,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.001851851851851852,
37
+ "exact_match_stderr,none": 0.001851851851851852,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0002,
54
+ "exact_match_stderr,none": 0.0001999547463471357,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step39000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step39000",
457
+ "model_sha": "5a4c489df54902660037150c9efc7fe288ba5445",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723478118.404584,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 598713.237571929,
480
+ "end_time": 598958.656903778,
481
+ "total_evaluation_time_seconds": "245.41933184897061"
482
+ }
pythia-14m-seed1/step4/EleutherAI__pythia-14m-seed1/results_2024-08-12T05-47-23.908503.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 3577077.782029242,
5
+ "perplexity_stderr,none": 346451.99565970706,
6
+ "acc,none": 0.0,
7
+ "acc_stderr,none": 0.0,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step4,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step4",
457
+ "model_sha": "72f661aa74ff6f4226f9b6830e8888c1312664e2",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723466616.3978312,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 587213.770161715,
480
+ "end_time": 587456.114898593,
481
+ "total_evaluation_time_seconds": "242.34473687806167"
482
+ }
pythia-14m-seed1/step4000/EleutherAI__pythia-14m-seed1/results_2024-08-12T06-33-15.998610.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 2808.885365372563,
5
+ "perplexity_stderr,none": 124.03134252171543,
6
+ "acc,none": 0.06384630312439356,
7
+ "acc_stderr,none": 0.0034060696844330452,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step4000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step4000",
457
+ "model_sha": "fada4a82218d9b0254c96b1c369a423e827a409f",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723469369.1975448,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 589967.38387155,
480
+ "end_time": 590208.205939946,
481
+ "total_evaluation_time_seconds": "240.8220683960244"
482
+ }
pythia-14m-seed1/step40000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-03-22.077168.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1204.9911371450303,
5
+ "perplexity_stderr,none": 54.28190867159313,
6
+ "acc,none": 0.09392586842615952,
7
+ "acc_stderr,none": 0.004064307401732146,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step40000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step40000",
457
+ "model_sha": "8ff1656834308baaecb093c2f3172c9198144382",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723478377.1336043,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 598965.37537771,
480
+ "end_time": 599214.284706319,
481
+ "total_evaluation_time_seconds": "248.90932860900648"
482
+ }
pythia-14m-seed1/step41000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-07-29.805237.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1066.3853643932846,
5
+ "perplexity_stderr,none": 48.51192891663625,
6
+ "acc,none": 0.10421113914224724,
7
+ "acc_stderr,none": 0.004256689511125182,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.00019999999999999998,
12
+ "exact_match_stderr,none": 0.00019993112346228413,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0020876826722338203,
27
+ "exact_match_stderr,none": 0.0020876826722338207,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.00019999999999999998,
54
+ "exact_match_stderr,none": 0.00019993112346228413,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step41000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step41000",
457
+ "model_sha": "f99142bc12d9ade53a2f94c4c036aac75c7519ec",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723478622.908552,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 2200.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 599220.025245513,
480
+ "end_time": 599462.007075518,
481
+ "total_evaluation_time_seconds": "241.98183000506833"
482
+ }
pythia-14m-seed1/step42000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-11-40.178060.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1120.2234090661466,
5
+ "perplexity_stderr,none": 50.333654631556755,
6
+ "acc,none": 0.09664273238889967,
7
+ "acc_stderr,none": 0.004116484120110667,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step42000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step42000",
457
+ "model_sha": "3ab79635fe11167d8cb1170a167c937f0c49838b",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723478870.766831,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 599467.765480389,
480
+ "end_time": 599712.385375487,
481
+ "total_evaluation_time_seconds": "244.61989509803243"
482
+ }
pythia-14m-seed1/step43000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-15-48.237659.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1222.7750559057145,
5
+ "perplexity_stderr,none": 55.19618389771133,
6
+ "acc,none": 0.09761304094702115,
7
+ "acc_stderr,none": 0.0041348751357468405,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0002,
12
+ "exact_match_stderr,none": 0.00019995678465298491,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0018315018315018315,
47
+ "exact_match_stderr,none": 0.0018315018315018313,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0002,
54
+ "exact_match_stderr,none": 0.00019995678465298491,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step43000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step43000",
457
+ "model_sha": "a5868a08e71e59908f5b17551b31db6eca0fd211",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723479121.3723686,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 599718.335975932,
480
+ "end_time": 599960.440780523,
481
+ "total_evaluation_time_seconds": "242.10480459104292"
482
+ }
pythia-14m-seed1/step44000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-20-11.460936.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1054.0902326469609,
5
+ "perplexity_stderr,none": 47.94516895248167,
6
+ "acc,none": 0.10440520085387153,
7
+ "acc_stderr,none": 0.004260189531743511,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.0,
12
+ "exact_match_stderr,none": 0.0,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0,
27
+ "exact_match_stderr,none": 0.0,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.0,
54
+ "exact_match_stderr,none": 0.0,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step44000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step44000",
457
+ "model_sha": "84f55295500644f84cf599c6c755a88927fe6371",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723479380.6053634,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 599967.536589297,
480
+ "end_time": 600223.662270896,
481
+ "total_evaluation_time_seconds": "256.12568159902"
482
+ }
pythia-14m-seed1/step45000/EleutherAI__pythia-14m-seed1/results_2024-08-12T09-24-41.702741.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_openai": {
4
+ "perplexity,none": 1151.4880964856604,
5
+ "perplexity_stderr,none": 51.8272862471497,
6
+ "acc,none": 0.09838928779351834,
7
+ "acc_stderr,none": 0.004149497552485457,
8
+ "alias": "lambada_openai"
9
+ },
10
+ "hendrycks_math": {
11
+ "exact_match,none": 0.00019999999999999998,
12
+ "exact_match_stderr,none": 0.00019993112346228413,
13
+ "alias": "hendrycks_math"
14
+ },
15
+ "hendrycks_math_algebra": {
16
+ "exact_match,none": 0.0,
17
+ "exact_match_stderr,none": 0.0,
18
+ "alias": " - hendrycks_math_algebra"
19
+ },
20
+ "hendrycks_math_counting_and_prob": {
21
+ "exact_match,none": 0.0,
22
+ "exact_match_stderr,none": 0.0,
23
+ "alias": " - hendrycks_math_counting_and_prob"
24
+ },
25
+ "hendrycks_math_geometry": {
26
+ "exact_match,none": 0.0020876826722338203,
27
+ "exact_match_stderr,none": 0.0020876826722338207,
28
+ "alias": " - hendrycks_math_geometry"
29
+ },
30
+ "hendrycks_math_intermediate_algebra": {
31
+ "exact_match,none": 0.0,
32
+ "exact_match_stderr,none": 0.0,
33
+ "alias": " - hendrycks_math_intermediate_algebra"
34
+ },
35
+ "hendrycks_math_num_theory": {
36
+ "exact_match,none": 0.0,
37
+ "exact_match_stderr,none": 0.0,
38
+ "alias": " - hendrycks_math_num_theory"
39
+ },
40
+ "hendrycks_math_prealgebra": {
41
+ "exact_match,none": 0.0,
42
+ "exact_match_stderr,none": 0.0,
43
+ "alias": " - hendrycks_math_prealgebra"
44
+ },
45
+ "hendrycks_math_precalc": {
46
+ "exact_match,none": 0.0,
47
+ "exact_match_stderr,none": 0.0,
48
+ "alias": " - hendrycks_math_precalc"
49
+ }
50
+ },
51
+ "groups": {
52
+ "hendrycks_math": {
53
+ "exact_match,none": 0.00019999999999999998,
54
+ "exact_match_stderr,none": 0.00019993112346228413,
55
+ "alias": "hendrycks_math"
56
+ }
57
+ },
58
+ "group_subtasks": {
59
+ "hendrycks_math": [
60
+ "hendrycks_math_precalc",
61
+ "hendrycks_math_prealgebra",
62
+ "hendrycks_math_num_theory",
63
+ "hendrycks_math_intermediate_algebra",
64
+ "hendrycks_math_geometry",
65
+ "hendrycks_math_counting_and_prob",
66
+ "hendrycks_math_algebra"
67
+ ],
68
+ "lambada_openai": []
69
+ },
70
+ "configs": {
71
+ "hendrycks_math_algebra": {
72
+ "task": "hendrycks_math_algebra",
73
+ "group": [
74
+ "math_word_problems"
75
+ ],
76
+ "dataset_path": "EleutherAI/hendrycks_math",
77
+ "dataset_name": "algebra",
78
+ "dataset_kwargs": {
79
+ "trust_remote_code": true
80
+ },
81
+ "training_split": "train",
82
+ "test_split": "test",
83
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
84
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
85
+ "doc_to_target": "{{answer}}",
86
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "num_fewshot": 0,
91
+ "metric_list": [
92
+ {
93
+ "metric": "exact_match",
94
+ "aggregation": "mean",
95
+ "higher_is_better": true
96
+ }
97
+ ],
98
+ "output_type": "generate_until",
99
+ "generation_kwargs": {
100
+ "until": [
101
+ "Problem:"
102
+ ],
103
+ "do_sample": false,
104
+ "temperature": 0.0
105
+ },
106
+ "repeats": 1,
107
+ "should_decontaminate": false,
108
+ "metadata": {
109
+ "version": 1.0
110
+ }
111
+ },
112
+ "hendrycks_math_counting_and_prob": {
113
+ "task": "hendrycks_math_counting_and_prob",
114
+ "group": [
115
+ "math_word_problems"
116
+ ],
117
+ "dataset_path": "EleutherAI/hendrycks_math",
118
+ "dataset_name": "counting_and_probability",
119
+ "dataset_kwargs": {
120
+ "trust_remote_code": true
121
+ },
122
+ "training_split": "train",
123
+ "test_split": "test",
124
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
125
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
126
+ "doc_to_target": "{{answer}}",
127
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
128
+ "description": "",
129
+ "target_delimiter": " ",
130
+ "fewshot_delimiter": "\n\n",
131
+ "num_fewshot": 0,
132
+ "metric_list": [
133
+ {
134
+ "metric": "exact_match",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "generate_until",
140
+ "generation_kwargs": {
141
+ "until": [
142
+ "Problem:"
143
+ ],
144
+ "do_sample": false,
145
+ "temperature": 0.0
146
+ },
147
+ "repeats": 1,
148
+ "should_decontaminate": false,
149
+ "metadata": {
150
+ "version": 1.0
151
+ }
152
+ },
153
+ "hendrycks_math_geometry": {
154
+ "task": "hendrycks_math_geometry",
155
+ "group": [
156
+ "math_word_problems"
157
+ ],
158
+ "dataset_path": "EleutherAI/hendrycks_math",
159
+ "dataset_name": "geometry",
160
+ "dataset_kwargs": {
161
+ "trust_remote_code": true
162
+ },
163
+ "training_split": "train",
164
+ "test_split": "test",
165
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
166
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
167
+ "doc_to_target": "{{answer}}",
168
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
169
+ "description": "",
170
+ "target_delimiter": " ",
171
+ "fewshot_delimiter": "\n\n",
172
+ "num_fewshot": 0,
173
+ "metric_list": [
174
+ {
175
+ "metric": "exact_match",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "generate_until",
181
+ "generation_kwargs": {
182
+ "until": [
183
+ "Problem:"
184
+ ],
185
+ "do_sample": false,
186
+ "temperature": 0.0
187
+ },
188
+ "repeats": 1,
189
+ "should_decontaminate": false,
190
+ "metadata": {
191
+ "version": 1.0
192
+ }
193
+ },
194
+ "hendrycks_math_intermediate_algebra": {
195
+ "task": "hendrycks_math_intermediate_algebra",
196
+ "group": [
197
+ "math_word_problems"
198
+ ],
199
+ "dataset_path": "EleutherAI/hendrycks_math",
200
+ "dataset_name": "intermediate_algebra",
201
+ "dataset_kwargs": {
202
+ "trust_remote_code": true
203
+ },
204
+ "training_split": "train",
205
+ "test_split": "test",
206
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
207
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
208
+ "doc_to_target": "{{answer}}",
209
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "num_fewshot": 0,
214
+ "metric_list": [
215
+ {
216
+ "metric": "exact_match",
217
+ "aggregation": "mean",
218
+ "higher_is_better": true
219
+ }
220
+ ],
221
+ "output_type": "generate_until",
222
+ "generation_kwargs": {
223
+ "until": [
224
+ "Problem:"
225
+ ],
226
+ "do_sample": false,
227
+ "temperature": 0.0
228
+ },
229
+ "repeats": 1,
230
+ "should_decontaminate": false,
231
+ "metadata": {
232
+ "version": 1.0
233
+ }
234
+ },
235
+ "hendrycks_math_num_theory": {
236
+ "task": "hendrycks_math_num_theory",
237
+ "group": [
238
+ "math_word_problems"
239
+ ],
240
+ "dataset_path": "EleutherAI/hendrycks_math",
241
+ "dataset_name": "number_theory",
242
+ "dataset_kwargs": {
243
+ "trust_remote_code": true
244
+ },
245
+ "training_split": "train",
246
+ "test_split": "test",
247
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
248
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
249
+ "doc_to_target": "{{answer}}",
250
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
251
+ "description": "",
252
+ "target_delimiter": " ",
253
+ "fewshot_delimiter": "\n\n",
254
+ "num_fewshot": 0,
255
+ "metric_list": [
256
+ {
257
+ "metric": "exact_match",
258
+ "aggregation": "mean",
259
+ "higher_is_better": true
260
+ }
261
+ ],
262
+ "output_type": "generate_until",
263
+ "generation_kwargs": {
264
+ "until": [
265
+ "Problem:"
266
+ ],
267
+ "do_sample": false,
268
+ "temperature": 0.0
269
+ },
270
+ "repeats": 1,
271
+ "should_decontaminate": false,
272
+ "metadata": {
273
+ "version": 1.0
274
+ }
275
+ },
276
+ "hendrycks_math_prealgebra": {
277
+ "task": "hendrycks_math_prealgebra",
278
+ "group": [
279
+ "math_word_problems"
280
+ ],
281
+ "dataset_path": "EleutherAI/hendrycks_math",
282
+ "dataset_name": "prealgebra",
283
+ "dataset_kwargs": {
284
+ "trust_remote_code": true
285
+ },
286
+ "training_split": "train",
287
+ "test_split": "test",
288
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
289
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
290
+ "doc_to_target": "{{answer}}",
291
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "num_fewshot": 0,
296
+ "metric_list": [
297
+ {
298
+ "metric": "exact_match",
299
+ "aggregation": "mean",
300
+ "higher_is_better": true
301
+ }
302
+ ],
303
+ "output_type": "generate_until",
304
+ "generation_kwargs": {
305
+ "until": [
306
+ "Problem:"
307
+ ],
308
+ "do_sample": false,
309
+ "temperature": 0.0
310
+ },
311
+ "repeats": 1,
312
+ "should_decontaminate": false,
313
+ "metadata": {
314
+ "version": 1.0
315
+ }
316
+ },
317
+ "hendrycks_math_precalc": {
318
+ "task": "hendrycks_math_precalc",
319
+ "group": [
320
+ "math_word_problems"
321
+ ],
322
+ "dataset_path": "EleutherAI/hendrycks_math",
323
+ "dataset_name": "precalculus",
324
+ "dataset_kwargs": {
325
+ "trust_remote_code": true
326
+ },
327
+ "training_split": "train",
328
+ "test_split": "test",
329
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
330
+ "doc_to_text": "Problem: {{problem}}\nAnswer:",
331
+ "doc_to_target": "{{answer}}",
332
+ "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
333
+ "description": "",
334
+ "target_delimiter": " ",
335
+ "fewshot_delimiter": "\n\n",
336
+ "num_fewshot": 0,
337
+ "metric_list": [
338
+ {
339
+ "metric": "exact_match",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "generate_until",
345
+ "generation_kwargs": {
346
+ "until": [
347
+ "Problem:"
348
+ ],
349
+ "do_sample": false,
350
+ "temperature": 0.0
351
+ },
352
+ "repeats": 1,
353
+ "should_decontaminate": false,
354
+ "metadata": {
355
+ "version": 1.0
356
+ }
357
+ },
358
+ "lambada_openai": {
359
+ "task": "lambada_openai",
360
+ "group": [
361
+ "lambada"
362
+ ],
363
+ "dataset_path": "EleutherAI/lambada_openai",
364
+ "dataset_name": "default",
365
+ "dataset_kwargs": {
366
+ "trust_remote_code": true
367
+ },
368
+ "test_split": "test",
369
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
370
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
371
+ "description": "",
372
+ "target_delimiter": " ",
373
+ "fewshot_delimiter": "\n\n",
374
+ "num_fewshot": 0,
375
+ "metric_list": [
376
+ {
377
+ "metric": "perplexity",
378
+ "aggregation": "perplexity",
379
+ "higher_is_better": false
380
+ },
381
+ {
382
+ "metric": "acc",
383
+ "aggregation": "mean",
384
+ "higher_is_better": true
385
+ }
386
+ ],
387
+ "output_type": "loglikelihood",
388
+ "repeats": 1,
389
+ "should_decontaminate": true,
390
+ "doc_to_decontamination_query": "{{text}}",
391
+ "metadata": {
392
+ "version": 1.0
393
+ }
394
+ }
395
+ },
396
+ "versions": {
397
+ "hendrycks_math_algebra": 1.0,
398
+ "hendrycks_math_counting_and_prob": 1.0,
399
+ "hendrycks_math_geometry": 1.0,
400
+ "hendrycks_math_intermediate_algebra": 1.0,
401
+ "hendrycks_math_num_theory": 1.0,
402
+ "hendrycks_math_prealgebra": 1.0,
403
+ "hendrycks_math_precalc": 1.0,
404
+ "lambada_openai": 1.0
405
+ },
406
+ "n-shot": {
407
+ "hendrycks_math": 0,
408
+ "hendrycks_math_algebra": 0,
409
+ "hendrycks_math_counting_and_prob": 0,
410
+ "hendrycks_math_geometry": 0,
411
+ "hendrycks_math_intermediate_algebra": 0,
412
+ "hendrycks_math_num_theory": 0,
413
+ "hendrycks_math_prealgebra": 0,
414
+ "hendrycks_math_precalc": 0,
415
+ "lambada_openai": 0
416
+ },
417
+ "n-samples": {
418
+ "lambada_openai": {
419
+ "original": 5153,
420
+ "effective": 5153
421
+ },
422
+ "hendrycks_math_precalc": {
423
+ "original": 546,
424
+ "effective": 546
425
+ },
426
+ "hendrycks_math_prealgebra": {
427
+ "original": 871,
428
+ "effective": 871
429
+ },
430
+ "hendrycks_math_num_theory": {
431
+ "original": 540,
432
+ "effective": 540
433
+ },
434
+ "hendrycks_math_intermediate_algebra": {
435
+ "original": 903,
436
+ "effective": 903
437
+ },
438
+ "hendrycks_math_geometry": {
439
+ "original": 479,
440
+ "effective": 479
441
+ },
442
+ "hendrycks_math_counting_and_prob": {
443
+ "original": 474,
444
+ "effective": 474
445
+ },
446
+ "hendrycks_math_algebra": {
447
+ "original": 1187,
448
+ "effective": 1187
449
+ }
450
+ },
451
+ "config": {
452
+ "model": "hf",
453
+ "model_args": "pretrained=EleutherAI/pythia-14m-seed1,revision=step45000,",
454
+ "model_num_parameters": 14067712,
455
+ "model_dtype": "torch.float16",
456
+ "model_revision": "step45000",
457
+ "model_sha": "6a56a88dbb56f315216c31814f5c54c2ebbd757f",
458
+ "batch_size": "128",
459
+ "batch_sizes": [],
460
+ "device": "cuda",
461
+ "use_cache": null,
462
+ "limit": null,
463
+ "bootstrap_iters": 100000,
464
+ "gen_kwargs": null,
465
+ "random_seed": 0,
466
+ "numpy_seed": 1234,
467
+ "torch_seed": 1234,
468
+ "fewshot_seed": 1234
469
+ },
470
+ "git_hash": "51a7ca9",
471
+ "date": 1723479654.2901926,
472
+ "pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
473
+ "transformers_version": "4.40.2",
474
+ "upper_git_hash": null,
475
+ "task_hashes": {},
476
+ "model_source": "hf",
477
+ "model_name": "EleutherAI/pythia-14m-seed1",
478
+ "model_name_sanitized": "EleutherAI__pythia-14m-seed1",
479
+ "start_time": 600230.934252729,
480
+ "end_time": 600493.901946463,
481
+ "total_evaluation_time_seconds": "262.96769373398274"
482
+ }