File size: 4,697 Bytes
e6cbf7f ac8dab6 1b88a1d ac8dab6 152fd61 ac8dab6 152fd61 ac8dab6 e733a20 ac8dab6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
task_categories:
- text-generation
language:
- en
tags:
- math
size_categories:
- 10B<n<100B
---
<img src="proofpile_logo.jpg" width="500">
[Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/)
[Github ](https://github.com/EleutherAI/math-lm) | [ArXiv](#)
The **Proof-Pile-2** is a 55 billion token dataset of mathematical and scientific documents. This dataset was created in order to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b) models. It consists of three subsets:
- `arxiv` (29B tokens): the ArXiv subset of [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
- `open-web-math` (15B tokens): The [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) dataset, which contains much of the high-quality mathematical text from the internet.
- `algebraic-stack` (11B tokens): A new dataset of mathematical code, including numerical computing, computer algebra, and formal mathematics.
You can download the dataset as follows
```python
from datasets import load_dataset
ds = load_dataset("EleuetherAI/proof-pile-2")
# To load only a specific subset, pass it as an argument, e.g
ds_arxiv = load_dataset("EleutherAI/proof-pile-2", "arxiv")
```
### Schema
Each dataset row has the following structure
```python
{
"text": ..., # document text
"meta": ..., # JSON string of metadata, schema specific to data source
}
```
### Dataset Contents
For detailed documentation of the ArXiv and web subsets, refer to [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) and [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math). The following table enumerates the contents of the AlgebraicStack by programming language. The AlgebraicStack is filtered to only include documents that contain mathematics, as judged by hand-crafted, language-specific heuristics.
| Language | AlgebraicStack tokens |
|-----------|-----------------------|
| Agda | 35.2 M |
| C | 25.1 M |
| C++ | 954.1 M |
| Coq | 281.9 M |
| Fortran | 724.9 M |
| GAP | 3.6 M |
| Haskell | 9.1 M |
| Idris | 10.9 M |
| Isabelle | 1,089.7 M |
| Julia | 531.0 M |
| Jupyter | 199.1 M |
| Lean | 285.6 M |
| Maple | 2.0 M |
| Matlab | 65.8 M |
| Python | 6,098.8 M |
| R | 71.3 M |
| Tex | 567.7 M |
| **Total** | **10,955.7 M** |
### License
We do not alter the license of any of the underlying data.
### Version History
**v1.1.0**: Contains an updated version of OpenWebMath, precisely the one available at [open-web-math/open-web-math](https://huggingface.co/datasets/open-web-math/open-web-math). This version of OpenWebMath has slightly improved filtering, for example, removal of very short documents.
**v1.0.0**: The data used to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b). Uses a development version of OpenWebMath.
### Citation
For the entire Proof-Pile-2, cite
```
@article{azerbayev2023llemma,
title={Llemma: an open language model for mathematics},
author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck},
eprint={xyz.xyz},
archivePrefix={arXiv}
year={2023}
}
```
For the ArXiv subset, cite
```
@software{together2023redpajama,
author = {Together Computer},
title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
month = April,
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data}
}
```
For OpenWebMath, cite
```
@misc{paster2023openwebmath,
title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text},
author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba},
year={2023},
eprint={2310.06786},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
```
|