noflm commited on
Commit
6180fee
·
1 Parent(s): 4f2bbbf

Delete cv11.py

Browse files
Files changed (1) hide show
  1. cv11.py +0 -199
cv11.py DELETED
@@ -1,199 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Common Voice Dataset"""
16
-
17
-
18
- import csv
19
- import os
20
- import json
21
-
22
- import datasets
23
- from datasets.utils.py_utils import size_str
24
- from tqdm import tqdm
25
-
26
- from .languages import LANGUAGES
27
- from .release_stats import STATS
28
-
29
-
30
- _CITATION = """\
31
- @inproceedings{commonvoice:2020,
32
- author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
33
- title = {Common Voice: A Massively-Multilingual Speech Corpus},
34
- booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
35
- pages = {4211--4215},
36
- year = 2020
37
- }
38
- """
39
-
40
- _HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
41
-
42
- _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
43
-
44
- # TODO: change "streaming" to "main" after merge!
45
- _BASE_URL = "https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/resolve/streaming/"
46
-
47
- _AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar"
48
-
49
- _TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv"
50
-
51
- _N_SHARDS_URL = _BASE_URL + "n_shards.json"
52
-
53
-
54
- class CommonVoiceConfig(datasets.BuilderConfig):
55
- """BuilderConfig for CommonVoice."""
56
-
57
- def __init__(self, name, version, **kwargs):
58
- self.language = kwargs.pop("language", None)
59
- self.release_date = kwargs.pop("release_date", None)
60
- self.num_clips = kwargs.pop("num_clips", None)
61
- self.num_speakers = kwargs.pop("num_speakers", None)
62
- self.validated_hr = kwargs.pop("validated_hr", None)
63
- self.total_hr = kwargs.pop("total_hr", None)
64
- self.size_bytes = kwargs.pop("size_bytes", None)
65
- self.size_human = size_str(self.size_bytes)
66
- description = (
67
- f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
68
- f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
69
- f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
70
- f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
71
- )
72
- super(CommonVoiceConfig, self).__init__(
73
- name=name,
74
- version=datasets.Version(version),
75
- description=description,
76
- **kwargs,
77
- )
78
-
79
-
80
- class CommonVoice(datasets.GeneratorBasedBuilder):
81
- DEFAULT_WRITER_BATCH_SIZE = 1000
82
-
83
- BUILDER_CONFIGS = [
84
- CommonVoiceConfig(
85
- name=lang,
86
- version=STATS["version"],
87
- language=LANGUAGES[lang],
88
- release_date=STATS["date"],
89
- num_clips=lang_stats["clips"],
90
- num_speakers=lang_stats["users"],
91
- validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None,
92
- total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
93
- size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
94
- )
95
- for lang, lang_stats in STATS["locales"].items()
96
- ]
97
-
98
- def _info(self):
99
- total_languages = len(STATS["locales"])
100
- total_valid_hours = STATS["totalValidHrs"]
101
- description = (
102
- "Common Voice is Mozilla's initiative to help teach machines how real people speak. "
103
- f"The dataset currently consists of {total_valid_hours} validated hours of speech "
104
- f" in {total_languages} languages, but more voices and languages are always added."
105
- )
106
- features = datasets.Features(
107
- {
108
- "client_id": datasets.Value("string"),
109
- "path": datasets.Value("string"),
110
- "audio": datasets.features.Audio(sampling_rate=48_000),
111
- "sentence": datasets.Value("string"),
112
- "up_votes": datasets.Value("int64"),
113
- "down_votes": datasets.Value("int64"),
114
- "age": datasets.Value("string"),
115
- "gender": datasets.Value("string"),
116
- "accent": datasets.Value("string"),
117
- "locale": datasets.Value("string"),
118
- "segment": datasets.Value("string"),
119
- }
120
- )
121
-
122
- return datasets.DatasetInfo(
123
- description=description,
124
- features=features,
125
- supervised_keys=None,
126
- homepage=_HOMEPAGE,
127
- license=_LICENSE,
128
- citation=_CITATION,
129
- version=self.config.version,
130
- )
131
-
132
- def _split_generators(self, dl_manager):
133
- lang = self.config.name
134
- n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
135
- with open(n_shards_path, encoding="utf-8") as f:
136
- n_shards = json.load(f)
137
-
138
- audio_urls = {}
139
- splits = ("train", "dev", "test", "other", "invalidated")
140
- for split in splits:
141
- audio_urls[split] = [
142
- _AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
143
- ]
144
- archive_paths = dl_manager.download(audio_urls)
145
- local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
146
-
147
- meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
148
- meta_paths = dl_manager.download_and_extract(meta_urls)
149
-
150
- split_generators = []
151
- split_names = {
152
- "train": datasets.Split.TRAIN,
153
- "dev": datasets.Split.VALIDATION,
154
- "test": datasets.Split.TEST,
155
- }
156
- for split in splits:
157
- split_generators.append(
158
- datasets.SplitGenerator(
159
- name=split_names.get(split, split),
160
- gen_kwargs={
161
- "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
162
- "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
163
- "meta_path": meta_paths[split],
164
- },
165
- ),
166
- )
167
-
168
- return split_generators
169
-
170
- def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
171
- data_fields = list(self._info().features.keys())
172
- metadata = {}
173
- with open(meta_path, encoding="utf-8") as f:
174
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
175
- for row in tqdm(reader, desc="Reading metadata..."):
176
- if not row["path"].endswith(".mp3"):
177
- row["path"] += ".mp3"
178
- # accent -> accents in CV 8.0
179
- if "accents" in row:
180
- row["accent"] = row["accents"]
181
- del row["accents"]
182
- # if data is incomplete, fill with empty values
183
- for field in data_fields:
184
- if field not in row:
185
- row[field] = ""
186
- metadata[row["path"]] = row
187
-
188
- for i, audio_archive in enumerate(archives):
189
- for filename, file in audio_archive:
190
- _, filename = os.path.split(filename)
191
- if filename in metadata:
192
- result = dict(metadata[filename])
193
- # set the audio feature and the path to the extracted file
194
- path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename
195
- result["audio"] = {"path": path, "bytes": file.read()}
196
- # set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
197
- result["path"] = path if local_extracted_archive_paths else filename
198
-
199
- yield path, result