Upload dataset_stt.py
Browse files- dataset_stt.py +36 -56
dataset_stt.py
CHANGED
@@ -1,67 +1,49 @@
|
|
1 |
import csv
|
|
|
2 |
import tarfile
|
|
|
3 |
import datasets
|
|
|
4 |
|
5 |
_DESCRIPTION = """\
|
6 |
-
This dataset is designed for speech-to-text tasks
|
7 |
-
The dataset is organized by splits (train, test, validation) for the Uzbek language.
|
8 |
"""
|
9 |
|
10 |
_CITATION = """\
|
11 |
-
@
|
12 |
-
title={
|
13 |
author={Your Name},
|
14 |
-
year={2025}
|
15 |
-
eprint={XXXX.XXXX},
|
16 |
-
archivePrefix={arXiv},
|
17 |
-
primaryClass={cs.CL}
|
18 |
}
|
19 |
"""
|
20 |
|
21 |
-
_LICENSE = "MIT"
|
22 |
-
|
23 |
class DatasetSTT(datasets.GeneratorBasedBuilder):
|
24 |
VERSION = datasets.Version("1.0.0")
|
25 |
-
|
26 |
def _info(self):
|
27 |
-
# Belgilangan feature'lar: audio field Audio tipida (sampling_rate ni moslashtiring, masalan 16000)
|
28 |
features = datasets.Features({
|
29 |
"id": datasets.Value("string"),
|
30 |
-
"audio": datasets.Audio(sampling_rate=16000),
|
31 |
"sentence": datasets.Value("string"),
|
32 |
"duration": datasets.Value("float"),
|
33 |
"age": datasets.Value("string"),
|
34 |
"gender": datasets.Value("string"),
|
35 |
"accents": datasets.Value("string"),
|
36 |
-
"locale": datasets.Value("string")
|
37 |
})
|
38 |
return datasets.DatasetInfo(
|
39 |
description=_DESCRIPTION,
|
40 |
features=features,
|
41 |
supervised_keys=None,
|
42 |
homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
|
43 |
-
license=_LICENSE,
|
44 |
citation=_CITATION,
|
45 |
)
|
46 |
-
|
47 |
def _split_generators(self, dl_manager):
|
48 |
"""
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
"train": {
|
53 |
-
"audio": "audio/uz/train/train.tar",
|
54 |
-
"transcript": "transcript/uz/train/train.tsv"
|
55 |
-
},
|
56 |
-
"test": {
|
57 |
-
"audio": "audio/uz/test/test.tar",
|
58 |
-
"transcript": "transcript/uz/test/test.tsv"
|
59 |
-
},
|
60 |
-
"validation": {
|
61 |
-
"audio": "audio/uz/validation/validation.tar",
|
62 |
-
"transcript": "transcript/uz/validation/validation.tsv"
|
63 |
-
}
|
64 |
-
}
|
65 |
"""
|
66 |
data_files = self.config.data_files
|
67 |
return [
|
@@ -87,42 +69,40 @@ class DatasetSTT(datasets.GeneratorBasedBuilder):
|
|
87 |
},
|
88 |
),
|
89 |
]
|
90 |
-
|
91 |
def _generate_examples(self, audio_archive, transcript_file):
|
92 |
"""
|
93 |
Transcript TSV faylini o'qib, har bir yozuv uchun:
|
94 |
-
|
95 |
-
|
|
|
96 |
"""
|
97 |
-
# Tar
|
98 |
with tarfile.open(audio_archive, "r:*") as tar:
|
99 |
-
#
|
100 |
-
tar_index = {member.name: member for member in tar.getmembers() if member.isfile()}
|
101 |
-
|
102 |
-
# Transcript TSV faylini
|
103 |
with open(transcript_file, "r", encoding="utf-8") as f:
|
104 |
reader = csv.DictReader(f, delimiter="\t")
|
105 |
-
for row in reader:
|
106 |
-
file_name = row["path"]
|
107 |
-
|
108 |
-
|
109 |
-
# Faylni o'qib, butun baytlarni olamiz
|
110 |
-
audio_member = tar.extractfile(tar_index[file_name])
|
111 |
-
if audio_member is None:
|
112 |
-
print(f"Warning: Could not extract {file_name} from {audio_archive}.")
|
113 |
-
continue
|
114 |
-
audio_bytes = audio_member.read()
|
115 |
-
else:
|
116 |
-
# Agar fayl topilmasa, ogohlantirish chiqaramiz va davom etamiz.
|
117 |
-
print(f"Warning: File {file_name} not found in archive {audio_archive}.")
|
118 |
continue
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
yield row["id"], {
|
122 |
"id": row["id"],
|
123 |
"audio": {"path": file_name, "bytes": audio_bytes},
|
124 |
"sentence": row["sentence"],
|
125 |
-
"duration": float(row["duration"]),
|
126 |
"age": row["age"],
|
127 |
"gender": row["gender"],
|
128 |
"accents": row["accents"],
|
|
|
1 |
import csv
|
2 |
+
import os
|
3 |
import tarfile
|
4 |
+
|
5 |
import datasets
|
6 |
+
from tqdm import tqdm
|
7 |
|
8 |
_DESCRIPTION = """\
|
9 |
+
This dataset is designed for speech-to-text (STT) tasks. It contains audio files stored as tar archives along with their corresponding transcript files in TSV format. The data is for the Uzbek language.
|
|
|
10 |
"""
|
11 |
|
12 |
_CITATION = """\
|
13 |
+
@misc{dataset_stt2025,
|
14 |
+
title={Dataset_STT},
|
15 |
author={Your Name},
|
16 |
+
year={2025}
|
|
|
|
|
|
|
17 |
}
|
18 |
"""
|
19 |
|
|
|
|
|
20 |
class DatasetSTT(datasets.GeneratorBasedBuilder):
|
21 |
VERSION = datasets.Version("1.0.0")
|
22 |
+
|
23 |
def _info(self):
|
|
|
24 |
features = datasets.Features({
|
25 |
"id": datasets.Value("string"),
|
26 |
+
"audio": datasets.Audio(sampling_rate=16000), # Agar kerak bo'lsa, sampling_rate ni moslashtiring
|
27 |
"sentence": datasets.Value("string"),
|
28 |
"duration": datasets.Value("float"),
|
29 |
"age": datasets.Value("string"),
|
30 |
"gender": datasets.Value("string"),
|
31 |
"accents": datasets.Value("string"),
|
32 |
+
"locale": datasets.Value("string")
|
33 |
})
|
34 |
return datasets.DatasetInfo(
|
35 |
description=_DESCRIPTION,
|
36 |
features=features,
|
37 |
supervised_keys=None,
|
38 |
homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
|
|
|
39 |
citation=_CITATION,
|
40 |
)
|
41 |
+
|
42 |
def _split_generators(self, dl_manager):
|
43 |
"""
|
44 |
+
_split_generators da har bir split uchun kerakli fayllarni belgilaymiz.
|
45 |
+
Biz quyidagi splitlarni qo'llaymiz: TRAIN, TEST va VALIDATION.
|
46 |
+
Data_files argumenti orqali audio arxiv va transcript TSV fayllarini olamiz.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
"""
|
48 |
data_files = self.config.data_files
|
49 |
return [
|
|
|
69 |
},
|
70 |
),
|
71 |
]
|
72 |
+
|
73 |
def _generate_examples(self, audio_archive, transcript_file):
|
74 |
"""
|
75 |
Transcript TSV faylini o'qib, har bir yozuv uchun:
|
76 |
+
- Tar arxivni ochamiz va audio fayllarni indekslaymiz.
|
77 |
+
- Transcript faylida ko'rsatilgan "path" ustuni orqali mos audio faylni topamiz.
|
78 |
+
- Audio faylni butun baytlar shaklida o'qib, audio maydoni sifatida qaytaramiz.
|
79 |
"""
|
80 |
+
# Tar arxivni ochamiz
|
81 |
with tarfile.open(audio_archive, "r:*") as tar:
|
82 |
+
# Arxiv ichidagi barcha fayllarni (fayl nomi -> tarinfo) indekslaymiz
|
83 |
+
tar_index = {os.path.basename(member.name): member for member in tar.getmembers() if member.isfile()}
|
84 |
+
|
85 |
+
# Transcript TSV faylini ochamiz (UTF-8 kodlashda)
|
86 |
with open(transcript_file, "r", encoding="utf-8") as f:
|
87 |
reader = csv.DictReader(f, delimiter="\t")
|
88 |
+
for row in tqdm(reader, desc="Processing transcripts"):
|
89 |
+
file_name = row["path"] # Masalan: "2cd08f62-aa25-4f5e-bb73-40cfc19a215e.mp3"
|
90 |
+
if file_name not in tar_index:
|
91 |
+
print(f"Warning: {file_name} not found in {audio_archive}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
continue
|
93 |
+
|
94 |
+
audio_member = tar.extractfile(tar_index[file_name])
|
95 |
+
if audio_member is None:
|
96 |
+
print(f"Warning: Could not extract {file_name}")
|
97 |
+
continue
|
98 |
+
|
99 |
+
audio_bytes = audio_member.read()
|
100 |
+
|
101 |
yield row["id"], {
|
102 |
"id": row["id"],
|
103 |
"audio": {"path": file_name, "bytes": audio_bytes},
|
104 |
"sentence": row["sentence"],
|
105 |
+
"duration": float(row["duration"]) if row["duration"] else 0.0,
|
106 |
"age": row["age"],
|
107 |
"gender": row["gender"],
|
108 |
"accents": row["accents"],
|