Elyordev commited on
Commit
b015b0a
·
verified ·
1 Parent(s): 423482e

Upload dataset_stt.py

Browse files
Files changed (1) hide show
  1. dataset_stt.py +36 -56
dataset_stt.py CHANGED
@@ -1,67 +1,49 @@
1
  import csv
 
2
  import tarfile
 
3
  import datasets
 
4
 
5
  _DESCRIPTION = """\
6
- This dataset is designed for speech-to-text tasks and contains audio files stored in tar archives along with corresponding transcript files in TSV format.
7
- The dataset is organized by splits (train, test, validation) for the Uzbek language.
8
  """
9
 
10
  _CITATION = """\
11
- @inproceedings{yourcitation2025,
12
- title={Your Dataset Title},
13
  author={Your Name},
14
- year={2025},
15
- eprint={XXXX.XXXX},
16
- archivePrefix={arXiv},
17
- primaryClass={cs.CL}
18
  }
19
  """
20
 
21
- _LICENSE = "MIT"
22
-
23
  class DatasetSTT(datasets.GeneratorBasedBuilder):
24
  VERSION = datasets.Version("1.0.0")
25
-
26
  def _info(self):
27
- # Belgilangan feature'lar: audio field Audio tipida (sampling_rate ni moslashtiring, masalan 16000)
28
  features = datasets.Features({
29
  "id": datasets.Value("string"),
30
- "audio": datasets.Audio(sampling_rate=16000),
31
  "sentence": datasets.Value("string"),
32
  "duration": datasets.Value("float"),
33
  "age": datasets.Value("string"),
34
  "gender": datasets.Value("string"),
35
  "accents": datasets.Value("string"),
36
- "locale": datasets.Value("string"),
37
  })
38
  return datasets.DatasetInfo(
39
  description=_DESCRIPTION,
40
  features=features,
41
  supervised_keys=None,
42
  homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
43
- license=_LICENSE,
44
  citation=_CITATION,
45
  )
46
-
47
  def _split_generators(self, dl_manager):
48
  """
49
- Biz kutilayotgan fayl strukturasini quyidagicha belgilaymiz:
50
-
51
- data_files = {
52
- "train": {
53
- "audio": "audio/uz/train/train.tar",
54
- "transcript": "transcript/uz/train/train.tsv"
55
- },
56
- "test": {
57
- "audio": "audio/uz/test/test.tar",
58
- "transcript": "transcript/uz/test/test.tsv"
59
- },
60
- "validation": {
61
- "audio": "audio/uz/validation/validation.tar",
62
- "transcript": "transcript/uz/validation/validation.tsv"
63
- }
64
- }
65
  """
66
  data_files = self.config.data_files
67
  return [
@@ -87,42 +69,40 @@ class DatasetSTT(datasets.GeneratorBasedBuilder):
87
  },
88
  ),
89
  ]
90
-
91
  def _generate_examples(self, audio_archive, transcript_file):
92
  """
93
  Transcript TSV faylini o'qib, har bir yozuv uchun:
94
- - tar arxivini ochib, "path" ustuni orqali audio faylni topamiz;
95
- - Audio faylni baytlar shaklida o'qib, datasets.Audio feature'iga mos formatda qaytaramiz.
 
96
  """
97
- # Tar arxivini ochamiz
98
  with tarfile.open(audio_archive, "r:*") as tar:
99
- # Tar arxividagi barcha fayllarni indekslaymiz (fayl nomi -> tarinfo)
100
- tar_index = {member.name: member for member in tar.getmembers() if member.isfile()}
101
-
102
- # Transcript TSV faylini o'qish (UTF-8 kodlashda)
103
  with open(transcript_file, "r", encoding="utf-8") as f:
104
  reader = csv.DictReader(f, delimiter="\t")
105
- for row in reader:
106
- file_name = row["path"]
107
- # Agar arxivda fayl topilsa:
108
- if file_name in tar_index:
109
- # Faylni o'qib, butun baytlarni olamiz
110
- audio_member = tar.extractfile(tar_index[file_name])
111
- if audio_member is None:
112
- print(f"Warning: Could not extract {file_name} from {audio_archive}.")
113
- continue
114
- audio_bytes = audio_member.read()
115
- else:
116
- # Agar fayl topilmasa, ogohlantirish chiqaramiz va davom etamiz.
117
- print(f"Warning: File {file_name} not found in archive {audio_archive}.")
118
  continue
119
-
120
- # Yozuvni qaytaramiz, audio maydoni uchun file nomi va baytlarni dictionary ko'rinishida beramiz.
 
 
 
 
 
 
121
  yield row["id"], {
122
  "id": row["id"],
123
  "audio": {"path": file_name, "bytes": audio_bytes},
124
  "sentence": row["sentence"],
125
- "duration": float(row["duration"]),
126
  "age": row["age"],
127
  "gender": row["gender"],
128
  "accents": row["accents"],
 
1
  import csv
2
+ import os
3
  import tarfile
4
+
5
  import datasets
6
+ from tqdm import tqdm
7
 
8
  _DESCRIPTION = """\
9
+ This dataset is designed for speech-to-text (STT) tasks. It contains audio files stored as tar archives along with their corresponding transcript files in TSV format. The data is for the Uzbek language.
 
10
  """
11
 
12
  _CITATION = """\
13
+ @misc{dataset_stt2025,
14
+ title={Dataset_STT},
15
  author={Your Name},
16
+ year={2025}
 
 
 
17
  }
18
  """
19
 
 
 
20
  class DatasetSTT(datasets.GeneratorBasedBuilder):
21
  VERSION = datasets.Version("1.0.0")
22
+
23
  def _info(self):
 
24
  features = datasets.Features({
25
  "id": datasets.Value("string"),
26
+ "audio": datasets.Audio(sampling_rate=16000), # Agar kerak bo'lsa, sampling_rate ni moslashtiring
27
  "sentence": datasets.Value("string"),
28
  "duration": datasets.Value("float"),
29
  "age": datasets.Value("string"),
30
  "gender": datasets.Value("string"),
31
  "accents": datasets.Value("string"),
32
+ "locale": datasets.Value("string")
33
  })
34
  return datasets.DatasetInfo(
35
  description=_DESCRIPTION,
36
  features=features,
37
  supervised_keys=None,
38
  homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
 
39
  citation=_CITATION,
40
  )
41
+
42
  def _split_generators(self, dl_manager):
43
  """
44
+ _split_generators da har bir split uchun kerakli fayllarni belgilaymiz.
45
+ Biz quyidagi splitlarni qo'llaymiz: TRAIN, TEST va VALIDATION.
46
+ Data_files argumenti orqali audio arxiv va transcript TSV fayllarini olamiz.
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  """
48
  data_files = self.config.data_files
49
  return [
 
69
  },
70
  ),
71
  ]
72
+
73
  def _generate_examples(self, audio_archive, transcript_file):
74
  """
75
  Transcript TSV faylini o'qib, har bir yozuv uchun:
76
+ - Tar arxivni ochamiz va audio fayllarni indekslaymiz.
77
+ - Transcript faylida ko'rsatilgan "path" ustuni orqali mos audio faylni topamiz.
78
+ - Audio faylni butun baytlar shaklida o'qib, audio maydoni sifatida qaytaramiz.
79
  """
80
+ # Tar arxivni ochamiz
81
  with tarfile.open(audio_archive, "r:*") as tar:
82
+ # Arxiv ichidagi barcha fayllarni (fayl nomi -> tarinfo) indekslaymiz
83
+ tar_index = {os.path.basename(member.name): member for member in tar.getmembers() if member.isfile()}
84
+
85
+ # Transcript TSV faylini ochamiz (UTF-8 kodlashda)
86
  with open(transcript_file, "r", encoding="utf-8") as f:
87
  reader = csv.DictReader(f, delimiter="\t")
88
+ for row in tqdm(reader, desc="Processing transcripts"):
89
+ file_name = row["path"] # Masalan: "2cd08f62-aa25-4f5e-bb73-40cfc19a215e.mp3"
90
+ if file_name not in tar_index:
91
+ print(f"Warning: {file_name} not found in {audio_archive}")
 
 
 
 
 
 
 
 
 
92
  continue
93
+
94
+ audio_member = tar.extractfile(tar_index[file_name])
95
+ if audio_member is None:
96
+ print(f"Warning: Could not extract {file_name}")
97
+ continue
98
+
99
+ audio_bytes = audio_member.read()
100
+
101
  yield row["id"], {
102
  "id": row["id"],
103
  "audio": {"path": file_name, "bytes": audio_bytes},
104
  "sentence": row["sentence"],
105
+ "duration": float(row["duration"]) if row["duration"] else 0.0,
106
  "age": row["age"],
107
  "gender": row["gender"],
108
  "accents": row["accents"],