import csv import os import tarfile import datasets from tqdm import tqdm _DESCRIPTION = """\ This dataset is designed for speech-to-text (STT) tasks. It contains audio files stored as tar archives along with their corresponding transcript files in TSV format. The data is for the Uzbek language. """ _CITATION = """\ @misc{dataset_stt2025, title={Dataset_STT}, author={Your Name}, year={2025} } """ class DatasetSTT(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features({ "id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16000), # Agar kerak bo'lsa, sampling_rate ni moslashtiring "sentence": datasets.Value("string"), "duration": datasets.Value("float"), "age": datasets.Value("string"), "gender": datasets.Value("string"), "accents": datasets.Value("string"), "locale": datasets.Value("string") }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT", citation=_CITATION, ) def _split_generators(self, dl_manager): """ _split_generators da har bir split uchun kerakli fayllarni belgilaymiz. Biz quyidagi splitlarni qo'llaymiz: TRAIN, TEST va VALIDATION. Data_files argumenti orqali audio arxiv va transcript TSV fayllarini olamiz. """ data_files = self.config.data_files return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "audio_archive": data_files["train"]["audio"], "transcript_file": data_files["train"]["transcript"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "audio_archive": data_files["test"]["audio"], "transcript_file": data_files["test"]["transcript"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "audio_archive": data_files["validation"]["audio"], "transcript_file": data_files["validation"]["transcript"], }, ), ] def _generate_examples(self, audio_archive, transcript_file): """ Transcript TSV faylini o'qib, har bir yozuv uchun: - Tar arxivni ochamiz va audio fayllarni indekslaymiz. - Transcript faylida ko'rsatilgan "path" ustuni orqali mos audio faylni topamiz. - Audio faylni butun baytlar shaklida o'qib, audio maydoni sifatida qaytaramiz. """ # Tar arxivni ochamiz with tarfile.open(audio_archive, "r:*") as tar: # Arxiv ichidagi barcha fayllarni (fayl nomi -> tarinfo) indekslaymiz tar_index = {os.path.basename(member.name): member for member in tar.getmembers() if member.isfile()} # Transcript TSV faylini ochamiz (UTF-8 kodlashda) with open(transcript_file, "r", encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for row in tqdm(reader, desc="Processing transcripts"): file_name = row["path"] # Masalan: "2cd08f62-aa25-4f5e-bb73-40cfc19a215e.mp3" if file_name not in tar_index: print(f"Warning: {file_name} not found in {audio_archive}") continue audio_member = tar.extractfile(tar_index[file_name]) if audio_member is None: print(f"Warning: Could not extract {file_name}") continue audio_bytes = audio_member.read() yield row["id"], { "id": row["id"], "audio": {"path": file_name, "bytes": audio_bytes}, "sentence": row["sentence"], "duration": float(row["duration"]) if row["duration"] else 0.0, "age": row["age"], "gender": row["gender"], "accents": row["accents"], "locale": row["locale"], }