# Dataset_STT This dataset is designed for speech-to-text (STT) tasks and contains audio files along with their corresponding transcripts for the Uzbek language. The dataset is organized into two main directories: one for the audio files and another for the transcript files. Each of these directories is further divided by language (`uz`) and by the data split: `train`, `test`, and `validation`. ## Dataset Structure Dataset_STT/ ├── audio/ │ ├── uz/ │ │ ├── test/ │ │ │ └── test.tar │ │ ├── train/ │ │ │ └── train.tar │ │ └── validation/ │ │ └── validation.tar ├── transcript/ │ ├── uz/ │ │ ├── test/ │ │ │ └── test.tsv │ │ ├── train/ │ │ │ └── train.tsv │ │ └── validation/ │ │ └── validation.tsv ## Files Description - **Audio Files:** The audio files are stored as tar archives for each data split (train, test, and validation). Each tar archive contains the actual audio recordings (e.g., in MP3 format). - **Transcript Files:** The transcript files are provided in TSV format with the following columns: - `id` - `path` (the filename of the audio file within the tar archive) - `sentence` (the transcription) - `duration` (audio duration in seconds) - `age` - `gender` - `accents` - `locale` - **Custom Loader (`dataset_stt.py`):** This script extracts audio files from the tar archives and pairs them with their metadata from the transcript TSV files. It returns the audio data using the `datasets.Audio` feature (with a sampling rate of 16000 Hz), which enables interactive playback in the Hugging Face dataset viewer. ## How to Load the Dataset You can load the dataset using the Hugging Face `datasets` library. For example: ```python from datasets import load_dataset data_files = { "train": {"audio": "audio/uz/train/train.tar", "transcript": "transcript/uz/train/train.tsv"}, "test": {"audio": "audio/uz/test/test.tar", "transcript": "transcript/uz/test/test.tsv"}, "validation": {"audio": "audio/uz/validation/validation.tar", "transcript": "transcript/uz/validation/validation.tsv"} } dataset = load_dataset("Elyordev/Dataset_STT", data_files=data_files) print(dataset)