File size: 4,579 Bytes
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import csv
import os
from typing import Iterator, Tuple

import datasets

_DESCRIPTION = """\

Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.

Audio fayllar .tar arxiv ichida saqlangan va tsv faylda fayl nomlari (masalan, H3H38EY38D8.mp3) keltirilgan.

"""

_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt"
_LICENSE = "MIT"  # O'zingizga mos litsenziya

# Har bir split uchun .tsv va .tar fayllarning repo ichidagi joylashuvi.
_URLS = {
    "train": {
        "tsv": "train/train.tsv",
        "tar": "train/train.tar",
    },
    "validation": {
        "tsv": "validation/validation.tsv",
        "tar": "validation/validation.tar",
    },
    "test": {
        "tsv": "test/test.tsv",
        "tar": "test/test.tar",
    },
}

class MyDatasetSTTConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(MyDatasetSTTConfig, self).__init__(**kwargs)

class MyDatasetSTT(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        MyDatasetSTTConfig(
            name="default",
            version=VERSION,
            description="My new STT dataset with mp3 audios in tar archives",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "id": datasets.Value("string"),
                "path": datasets.Value("string"),      # Fayl nomi, masalan: H3H38EY38D8.mp3
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
                # Audio feature: datasets.Audio avtomatik tarzda tar URI orqali yuklaydi
                "audio": datasets.Audio(sampling_rate=16000),
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        # Har bir split uchun .tsv va .tar fayllarni dl_manager yordamida yuklab olamiz.
        downloaded_files = {}
        for split in _URLS:
            downloaded_files[split] = {
                "tsv": dl_manager.download_and_extract(_URLS[split]["tsv"]),
                "tar": dl_manager.download_and_extract(_URLS[split]["tar"]),
            }
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "tsv_path": downloaded_files["train"]["tsv"],
                    "tar_path": downloaded_files["train"]["tar"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "tsv_path": downloaded_files["validation"]["tsv"],
                    "tar_path": downloaded_files["validation"]["tar"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "tsv_path": downloaded_files["test"]["tsv"],
                    "tar_path": downloaded_files["test"]["tar"],
                },
            ),
        ]

    def _generate_examples(self, tsv_path: str, tar_path: str) -> Iterator[Tuple[int, dict]]:
        """

        Har bir .tsv fayldagi qatordan misol yield qilamiz.

        Audio faylga murojaat qilish uchun "tar://" sintaksisidan foydalanamiz:

        Bu format: "tar://<tar fayl yo'li>#<tsv fayldagi path>".

        """
        with open(tsv_path, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                # Audio fayl uchun URI: masalan, "tar://.../train.tar#H3H38EY38D8.mp3"
                audio_ref = f"tar://{tar_path}#{row['path']}"
                yield idx, {
                    "id": row["id"],
                    "path": row["path"],
                    "sentence": row["sentence"],
                    "duration": float(row.get("duration", 0.0)),
                    "age": row.get("age", ""),
                    "gender": row.get("gender", ""),
                    "accents": row.get("accents", ""),
                    "locale": row.get("locale", ""),
                    "audio": audio_ref,
                }