File size: 4,926 Bytes
5820821
 
 
 
 
 
 
 
 
 
 
62eb364
5820821
 
62eb364
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62eb364
5820821
 
 
 
62eb364
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62eb364
 
 
 
 
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62eb364
5820821
 
 
 
 
 
62eb364
 
 
5820821
62eb364
 
5820821
 
62eb364
5820821
 
 
 
 
 
62eb364
5820821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import csv
import os
from typing import Iterator, Tuple

import datasets

_DESCRIPTION = """\

Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.

Audio fayllar .tar arxiv ichida saqlangan va tsv faylda fayl nomlari (masalan, H3H38EY38D8.mp3) keltirilgan.

"""
_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt"
_LICENSE = "MIT"

# Har bir split uchun .tsv va .tar fayllarning repo ichidagi joylashuvi.
# (Sizning repo tarkibingizda train/train.tsv, train/train.tar, va hokazo bo'lsa)
_URLS = {
    "train": {
        "tsv": "train/train.tsv",
        "tar": "train/train.tar",
    },
    "validation": {
        "tsv": "validation/validation.tsv",
        "tar": "validation/validation.tar",
    },
    "test": {
        "tsv": "test/test.tsv",
        "tar": "test/test.tar",
    },
}


class MyDatasetSTTConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(MyDatasetSTTConfig, self).__init__(**kwargs)


class MyDatasetSTT(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        MyDatasetSTTConfig(
            name="default",
            version=VERSION,
            description="My new STT dataset with mp3 audios in tar archives",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "id": datasets.Value("string"),
                "path": datasets.Value("string"),      # Fayl nomi, masalan: H3H38EY38D8.mp3
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
                # Audio feature: datasets.Audio avtomatik tarzda tar URI orqali yuklaydi
                "audio": datasets.Audio(sampling_rate=16000),
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split uchun .tsv va .tar fayllarni dl_manager yordamida yuklab olamiz.

        Orqa fon’da tar-faylni to‘liq extract qilish shart emas.

        'tar://...' URI orqali audio oqimini bevosita o‘qish mumkin.

        """
        downloaded_files = {}
        for split in _URLS:
            downloaded_files[split] = {
                "tsv": dl_manager.download_and_extract(_URLS[split]["tsv"]),
                "tar": dl_manager.download_and_extract(_URLS[split]["tar"]),
            }
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "tsv_path": downloaded_files["train"]["tsv"],
                    "tar_path": downloaded_files["train"]["tar"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "tsv_path": downloaded_files["validation"]["tsv"],
                    "tar_path": downloaded_files["validation"]["tar"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "tsv_path": downloaded_files["test"]["tsv"],
                    "tar_path": downloaded_files["test"]["tar"],
                },
            ),
        ]

    def _generate_examples(self, tsv_path: str, tar_path: str) -> Iterator[Tuple[int, dict]]:
        """

        Har bir .tsv fayldagi qatordan misol (example) yaratamiz.

        Audio faylga murojaat qilish uchun "tar://" sintaksisidan foydalanamiz:

        Bu format: "tar://<tar fayl yo'li>#<tsv fayldagi path>".

        """
        with open(tsv_path, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                # MP3 fayl nomi, masalan "H3H38EY38D8.mp3"
                mp3_file = row["path"]

                # Audio fayl uchun URI: masalan, "tar://.../train.tar#H3H38EY38D8.mp3"
                audio_ref = f"tar://{tar_path}#{mp3_file}"

                yield idx, {
                    "id": row["id"],
                    "path": mp3_file,
                    "sentence": row["sentence"],
                    "duration": float(row.get("duration", 0.0)),
                    "age": row.get("age", ""),
                    "gender": row.get("gender", ""),
                    "accents": row.get("accents", ""),
                    "locale": row.get("locale", ""),
                    "audio": audio_ref,  # tar ichidan oqish
                }