File size: 4,997 Bytes
b5a72fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import tarfile
import csv

import datasets
from datasets import Audio


class MySTTDatasetConfig(datasets.BuilderConfig):
    """Config klass (kerak bo'lsa turli versiya yoki param qo'yish uchun)."""


class MySTTDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        MySTTDatasetConfig(name="default", version=datasets.Version("1.0.0")),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description="STT dataset .tar ichida audio, .tsv ichida transkript",
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "audio": Audio(sampling_rate=None),  # Audio turi
                    "sentence": datasets.Value("string"),
                    "duration": datasets.Value("float"),
                    "age": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                    "accents": datasets.Value("string"),
                    "locale": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        """

          dl_manager.download_and_extract() bilan remote fayllarni yuklaysiz

          yoki local path bersangiz bo'ladi.

          Masalan: 

            https://huggingface.co/datasets/Elyordev/new_dataset_stt/resolve/main/Dataset_STT/audio/uz/train/train.tar

            https://huggingface.co/datasets/Elyordev/new_dataset_stt/resolve/main/Dataset_STT/transcript/uz/train/train.tsv

        """
        train_tar = dl_manager.download_and_extract("URL_train_tar")  # masalan
        train_tsv = dl_manager.download("URL_train_tsv")

        val_tar = dl_manager.download_and_extract("URL_val_tar")
        val_tsv = dl_manager.download("URL_val_tsv")

        test_tar = dl_manager.download_and_extract("URL_test_tar")
        test_tsv = dl_manager.download("URL_test_tsv")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive_path": train_tar,
                    "tsv_path": train_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive_path": val_tar,
                    "tsv_path": val_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive_path": test_tar,
                    "tsv_path": test_tsv,
                },
            ),
        ]

    def _generate_examples(self, archive_path, tsv_path):
        """

         Har bir tar faylni ochib, TSV dagi id + sentence boshqariladi.

        """
        # `archive_path` bu dl_manager.download_and_extract qilgan manzil
        # lekin e’tibor bering: .extract automatik ravishda chiqarib yuboradi.
        # Agar `.tar` ochilmasin desangiz, download() deyish kifoya, 
        # lekin streaming qilish uchun biroz boshqacha yo'l tutish kerak.

        # Keling, bu yerda tar fayl allaqachon extract qilingan deb faraz qilamiz:
        #  train.tar -> train/ (ichida mp3 fayllar paydo bo'lgan bo'ladi).
        #  Agar real .tar ichidan "on-the-fly" o'qimoqchi bo'lsak, 
        #  dl_manager.download() + tarfile.open(...) da ishlash lozim.

        # Shunchaki misol tariqasida:
        audio_base_path = archive_path  # extract bo'lgach papka manzili
        # Ehtimol, audio_base_path = os.path.join(archive_path, "train") bo'lishi ham mumkin
        # chunki tar ichida "train/" deb nomlangan ichki papka bo'lishi mumkin.

        with open(tsv_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for n, row in enumerate(reader):
                audio_id = row["id"]  # masalan '009f0d56-c7db-4de3-bd3e-92a37d6f0cb9'
                audio_file = audio_id + ".mp3"
                
                # to'liq path
                audio_path = os.path.join(audio_base_path, audio_file)

                # Agar audio fayl topilsa:
                if os.path.isfile(audio_path):
                    yield n, {
                        "id": audio_id,
                        "audio": audio_path,  # Audio typeda faqat path bersak, HF o'zi o'qiydi
                        "sentence": row["sentence"],
                        "duration": float(row["duration"]),
                        "age": row["age"],
                        "gender": row["gender"],
                        "accents": row["accents"],
                        "locale": row["locale"],
                    }
                else:
                    # Agar mp3 topilmasa, o'ziz xato signal qilishingiz mumkin
                    # yoki continue qilishingiz mumkin
                    pass